Advertisement

Deformable Modeling Using a 3D Boundary Representation with Quadratic Constraints on the Branching Structure of the Blum Skeleton

  • Paul A. Yushkevich
  • Hui Gary Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7917)

Abstract

We propose a new approach for statistical shape analysis of 3D anatomical objects based on features extracted from skeletons. Like prior work on medial representations [7,15,9], the approach involves deforming a template to target shapes in a way that preserves the branching structure of the skeleton and provides intersubject correspondence. However, unlike medial representations, which parameterize the skeleton surfaces explicitly, our representation is boundary-centric, and the skeleton is implicit. Similar to prior constrained modeling methods developed 2D objects [8] or tube-like 3D objects [13], we impose symmetry constraints on tuples of boundary points in a way that guarantees the preservation of the skeleton’s topology under deformation. Once discretized, the problem of deforming a template to a target shape is formulated as a quadratically constrained quadratic programming problem. The new technique is evaluated in terms of its ability to capture the shape of the corpus callosum tract extracted from diffusion-weighted MRI.

Keywords

Corpus Callosum Target Object Medial Axis Subdivision Scheme Iterative Close Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bastin, M.E., Maniega, S.M., Ferguson, K.J., Brown, L.J., Wardlaw, J.M., MacLullich, A.M.J., Clayden, J.D.: Quantifying the effects of normal ageing on white matter structure using unsupervised tract shape modelling. Neuroimage 51(1), 1–10 (2010)CrossRefGoogle Scholar
  2. 2.
    Blum, H.: A transformation for extracting new descriptors of shape. In: Models for the Perception of Speech and Visual Form. MIT Press (1967)Google Scholar
  3. 3.
    Bouix, S., Pruessner, J.C., Louis Collins, D., Siddiqi, K.: Hippocampal shape analysis using medial surfaces. Neuroimage 25(4), 1077–1089 (2005)CrossRefGoogle Scholar
  4. 4.
    Giblin, P.J., Kimia, B.B.: On the intrinsic reconstruction of shape from its symmetries. IEEE T. Pattern Anal. 25(7), 895–911 (2003)CrossRefGoogle Scholar
  5. 5.
    Hayasaka, S., Nichols, T.E.: Combining voxel intensity and cluster extent with permutation test framework. Neuroimage 23(1), 54–63 (2004)CrossRefGoogle Scholar
  6. 6.
    Loop, C.T.: Smooth subdivision surfaces based on triangles. Master’s thesis, Department of Mathematics, University of Utah, Salt Lake City (1987)Google Scholar
  7. 7.
    Pizer, S.M., Fletcher, P.T., Joshi, S., Thall, A., Chen, J.Z., Fridman, Y., Fritsch, D.S., Gash, A.G., Glotzer, J.M., Jiroutek, M.R., Lu, C., Muller, K.E., Tracton, G., Yushkevich, P., Chaney, E.L.: Deformable m-reps for 3D medical image segmentation. Int. J. Comput. Vision 55(2), 85–106 (2003)CrossRefGoogle Scholar
  8. 8.
    Sebastian, T.B., Tek, H., Crisco, J.J., Kimia, B.B.: Segmentation of carpal bones from CT images using skeletally coupled deformable models. Med. Image Anal. 7(1), 21–45 (2003)CrossRefGoogle Scholar
  9. 9.
    Siddiqi, K., Pizer, S.: Medial representations: mathematics, algorithms and applications, vol. 37. Springer (2008)Google Scholar
  10. 10.
    Styner, M., Gerig, G., Lieberman, J., Jones, D., Weinberger, D.: Statistical shape analysis of neuroanatomical structures based on medial models. Med. Image Anal. 7(3), 207–220 (2003)CrossRefGoogle Scholar
  11. 11.
    Sun, H., Frangi, A.F., Wang, H., Sukno, F.M., Tobon-Gomez, C., Yushkevich, P.A.: Automatic Cardiac MRI Segmentation Using a Biventricular Deformable Medial Model. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 468–475. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Terriberry, T.B., Gerig, G.: A Continuous 3-D Medial Shape Model With Branching. In: International Workshop on Mathematical Foundations of Computational Anatomy MFCA 2006, in Conjunction with MICCAI 2006 (2006)Google Scholar
  13. 13.
    Terzopoulos, D., Witkin, A., Kass, M.: Symmetry-seeking models and 3D object reconstruction. Int. J. Comput. Vision 1(3), 211–221 (1988)CrossRefGoogle Scholar
  14. 14.
    Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106, 25–57 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Yushkevich, P.A., Zhang, H., Gee, J.: Continuous medial representation for anatomical structures. IEEE Trans. Med. Imaging 25(2), 1547–1564 (2006)CrossRefGoogle Scholar
  16. 16.
    Zeng, X., Staib, L.H., Schultz, R.T., Duncan, J.S.: Segmentation and measurement of the cortex from 3-D MR images using coupled-surfaces propagation. IEEE Trans. Med. Imaging 18(10), 927–937 (1999)CrossRefGoogle Scholar
  17. 17.
    Zhang, H., Awate, S.P., Das, S.R., Woo, J.H., Melhem, E.R., Gee, J.C., Yushkevich, P.A.: A tract-specific framework for white matter morphometry combining macroscopic and microscopic tract features. Med. Image Anal. (May 2010)Google Scholar
  18. 18.
    Zhang, H., Yushkevich, P.A., Alexander, D.C., Gee, J.C.: Deformable registration of diffusion tensor MR images with explicit orientation optimization. Med. Image Anal. 10(5), 764–785 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Paul A. Yushkevich
    • 1
  • Hui Gary Zhang
    • 2
  1. 1.Penn Image Computing and Science Laboratory (PICSL), Department of RadiologyUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUnited Kingdom

Personalised recommendations