Advertisement

Exploring High-Order Functional Interactions via Structurally-Weighted LASSO Models

  • Dajiang Zhu
  • Xiang Li
  • Xi Jiang
  • Hanbo Chen
  • Dinggang Shen
  • Tianming Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7917)

Abstract

A major objective of brain science research is to model and quantify functional interaction patterns among neural networks, in the sense that meaningful interaction patterns reflect the working mechanisms of neural systems and represent their relationships with the external world. Most current research approaches in the neuroimaging field, however, focus on pair-wise functional/effective connectivity and are thus unable to handle high-order, network-scale functional interactions. In this paper, we propose a novel structurally-weighted LASSO (SW-LASSO) regression model to represent the functional interaction among multiple regions of interests (ROIs) based on resting state fMRI (rsfMRI) data. In particular, the structural connectivity constraints derived from diffusion tenor imaging (DTI) data are used to guide the selection of the weights, thus adaptively adjusting the penalty levels of different coefficients which correspond to different ROIs. The robustness and accuracy of our models are evaluated and demonstrated via a series of carefully designed experiments. In an application example, the generated regression graphs show different assortative mixing patterns between Mild Cognitive Impairment (MCI) patients and normal controls (NC). Our results indicate that the proposed model has promising potential to enable the construction of high-order functional networks and their applications in clinical datasets.

Keywords

High-order functional interaction LASSO 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Honey, C.J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R., Hagmann, P.: Predicting human resting-state functional connectivity from structural connectivity. PNAS 106(6), 2035–2040 (2009)CrossRefGoogle Scholar
  2. 2.
    Fox, M.D., Raichle, M.E.: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007)CrossRefGoogle Scholar
  3. 3.
    Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 186(10) (2009)Google Scholar
  4. 4.
    Calhoun, V.D., Adali, T., Pearlson, G.D., Pekar, J.J.: A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapping 14(3), 140–151 (2001)CrossRefGoogle Scholar
  5. 5.
    Roebroeck, A., Formisano, E., Goebel, R.: Mapping directed influence over the brain using Granger Causality and fMRI. NeuroImage 25, 230–242 (2005)CrossRefGoogle Scholar
  6. 6.
    Deshpande, G., Santhanam, P., Hu, X.: Instantaneous and causal connectivity in resting state brain networks derived from functional MRI data. NeuroImage 54(2), 1043–1052 (2011)CrossRefGoogle Scholar
  7. 7.
    Friston, K.J., Harrison, L., Penny, W.: Dynamic causal modelling. NeuroImage 19(3), 1273–1302 (2003)CrossRefGoogle Scholar
  8. 8.
    Harrison, L., Penny, W.D., Friston, K.: Multivariate autoregressive modeling of fMRI time series. NeuroImage 19, 1477–1491 (2003)CrossRefGoogle Scholar
  9. 9.
    Protzner, A.B., McIntosh, A.R.: Testing effective connectivity changes with structural equation modeling: what does a bad model tell us? Hum. Brain. Mapp. 27, 935–947 (2006)CrossRefGoogle Scholar
  10. 10.
    Kim, J., Zhu, W., Chang, L., Bentler, P.M., Ernst, T.: Unified Structural Equation Modeling Approach for the Analysis of Multisubject, Multivariate Functional MRI Data. Human Brain Mapping 28, 85–93 (2007)CrossRefGoogle Scholar
  11. 11.
    Ramsey, J., Hanson, S., Hanson, C., Halchenko, Y., Poldrack, R., Glymour, C.: Six problems for causal inference from fMRI. NeuroImage 49(2), 1545–1558 (2010)CrossRefGoogle Scholar
  12. 12.
    Ramsey, J.D., Hanson, S.J., Glymour, C.: Multi-subject search correctly identifies causal connections and most causal directions in the DCM models of the Smith et al. simulation study. NeuroImage 58(3), 838–848 (2011)CrossRefGoogle Scholar
  13. 13.
    Zhu, D., Li, K., Guo, L., Jiang, X., Zhang, T., Zhang, D., Chen, H., Deng, F., Faraco, C., Jin, C., Wee, C., Yuan, Y., Lv, P., Yin, Y., Hu, X., Duan, L., Hu, X., Han, J., Wang, L., Shen, D., Miller, L.S., Li, L., Liu, T.: DICCCOL: Dense Individualized and Common Connectivity-based Cortical Landmarks. Cerebral Cortex 23(4), 786–800 (2012)CrossRefGoogle Scholar
  14. 14.
    Li, K., Guo, L., Faraco, C., Zhu, D., Deng, F., Zhang, T., Jiang, X., Zhang, D., Chen, H., Hu, X., Miller, L.S., Liu, T.: Individualized ROI Optimization via Maximization of Group-wise Consistency of Structural and Functional Profiles. In: NIPS (2010)Google Scholar
  15. 15.
    Zhu, D., Zhang, D., Faraco, C., Li, K., Deng, F., Chen, H., Jiang, X., Guo, L., Miller, L.S., Liu, T.: Discovering Dense and Consistent Landmarks in the Brain. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 97–110. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Zhu, D., Li, K., Faraco, C., Deng, F., Zhang, D., Jiang, X., Chen, H., Guo, L., Miller, L.S., Liu, T.: Optimization of Functional Brain ROIs via Maximization of Consistency of Structural Connectivity Profiles. NeuroImage 59, 1382–1393 (2011)CrossRefGoogle Scholar
  17. 17.
    Honey, C.J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R., Hagmann, P.: Predicting human resting-state functional connectivity from structural connectivity. PNAS 106(6), 2035–2040 (2009)CrossRefGoogle Scholar
  18. 18.
    Karas, G., Sluimer, J., Goekoop, R., Flier, W., Rombouts, S.A.R.B., Vrenken, H., Scheltens, P., Fox, N., Barkhof, F.: Amnestic mild cognitive impairment: structural MR imaging findings predictive of conversion to Alzheimer disease. AJNR 29(5), 944–949 (2008)CrossRefGoogle Scholar
  19. 19.
    Tibshirani, R.: Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society 58, 267–288 (1996)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Zou, H.: The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101(476), 1418–1429 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Passingham, R.E., Stephan, K.E., Kötter, R.: The anatomical basis of functional localization in the cortex. Nat. Rev. Neurosci. 3(8), 606–616 (2002)Google Scholar
  22. 22.
    Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least Angle Regression. The Annals of Statistics 32, 407–499 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
  24. 24.
    Dougherty, E.R., Kim, S., Chen, Y.D.: Coefficient of determination in nonlinear signal processing. Signal Process. 80(10), 2219–2235 (2000)zbMATHCrossRefGoogle Scholar
  25. 25.
    Newman, M.E.J.: Assortative Mixing in Networks. Physical Review Letters 89 (2002)Google Scholar
  26. 26.
    Bero, A.W., Yan, P., Roh, J.H., Cirrito, J.R., Stewart, F.R., Raichle, M.E., Lee, J.M., Holtzman, D.M.: Neuronal activity regulates the regional vulnerability to amyloid-beta deposition. Nature Neuroscience 14, 750–756 (2011)CrossRefGoogle Scholar
  27. 27.
    Neapolitan, R.E.: Learning Bayesian Networks. Prentice Hall (2004)Google Scholar
  28. 28.
    Chang, C., Gary, G.H.: Time - frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage 50(1), 81–98 (2010)CrossRefGoogle Scholar
  29. 29.
    Majeed, W., Magnuson, M., Hasenkamp, W., Schwarb, H., Schumacher, E.H., Barsalou, L., Keilholz, S.D.: Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans. NeuroImage 54, 1140–1150 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dajiang Zhu
    • 1
  • Xiang Li
    • 1
  • Xi Jiang
    • 1
  • Hanbo Chen
    • 1
  • Dinggang Shen
    • 2
  • Tianming Liu
    • 1
  1. 1.Cortical Architecture Imaging and Discovery Lab, Department of Computer ScienceUniversity of GeorgiaAthensUSA
  2. 2.Department of RadiologyUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations