Advertisement

A Longitudinal Functional Analysis Framework for Analysis of White Matter Tract Statistics

  • Ying Yuan
  • John H. Gilmore
  • Xiujuan Geng
  • Martin A. Styner
  • Kehui Chen
  • Jane-ling Wang
  • Hongtu Zhu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7917)

Abstract

Many longitudinal imaging studies have been/are being widely conducted to use diffusion tensor imaging (DTI) to better understand white matter maturation in normal controls and diseased subjects. There is an urgent demand for the development of statistical methods for analyzing diffusion properties along major fiber tracts obtained from longitudinal DTI studies. Jointly analyzing fiber-tract diffusion properties and covariates from longitudinal studies raises several major challenges including (i) infinite-dimensional functional response data, (ii) complex spatial-temporal correlation structure, and (iii) complex spatial smoothness. To address these challenges, this article is to develop a longitudinal functional analysis framework (LFAF) to delineate the dynamic changes of diffusion properties along major fiber tracts and their association with a set of covariates of interest (e.g., age and group status) and the structure of the variability of these white matter tract properties in various longitudinal studies. Our LFAF consists of a functional mixed effects model for addressing all three challenges, an efficient method for spatially smoothing varying coefficient functions, an estimation method for estimating the spatial-temporal correlation structure, a test procedure with a global test statistic for testing hypotheses of interest associated with functional response, and a simultaneous confidence band for quantifying the uncertainty in the estimated coefficient functions. Simulated data are used to evaluate the finite sample performance of LFAF and to demonstrate that LFAF significantly outperforms a voxel-wise mixed model method. We apply LFAF to study the spatial-temporal dynamics of white-matter fiber tracts in a clinical study of neurodevelopment.

Keywords

White Matter Fractional Anisotropy Coverage Probability Gradient Direction Local Linear Regression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Geng, X., Gouttard, S., Sharma, A., Gu, H., Styner, M., Lin, W.: Quantitative tract-based white matter development from birth to age 2 years. NeuroImage 61, 542–557 (2012)CrossRefGoogle Scholar
  2. 2.
    Ding, X.Q., Sun, Y., Braass, H., Illies, T., Zeumer, H., Lanfermann, H., Fiehler, J.: Evidence of rapid ongoing brain development beyond 2 years of age detected by fiber tracking. American Journal of Neuroradiology 29, 1261–1265 (2008)CrossRefGoogle Scholar
  3. 3.
    Agosta, F., Henry, R.G., Migliaccio, R., Neuhaus, J., Miller, B.L., Dronkers, N.F., Brambati, S.M., Filippi, M., Ogar, J.M., Wilson, S.M., Gorno-Tempini, M.L.: Language networks in semantic dementia. Brain 133, 286–299 (2010)CrossRefGoogle Scholar
  4. 4.
    Zhu, H., Styner, M., Tang, N., Liu, Z., Lin, W., Gilmore, J.H.: Frats: Functional regression analysis of dti tract statistics. IEEE Trans. Med. Imaging 29, 1039–1049 (2010)CrossRefGoogle Scholar
  5. 5.
    Zhu, H., Kong, L., Li, R., Styner, M., Gerig, G., Lin, W., Gilmore, J.H.: Fadtts: Functional analysis of diffusion tensor tract statistics. NeuroImage 56, 1412–1425 (2011)CrossRefGoogle Scholar
  6. 6.
    Goodlett, C.B., Fletcher, P.T., Gilmore, J.H., Gerig, G.: Group analysis of dti fiber tract statistics with application to neurodevelopment. NeuroImage 142, S133–S142 (2009)Google Scholar
  7. 7.
    Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., Watkins, K.E., Ciccarelli, O., Cader, M.Z., Matthews, P.M., Behrens, T.E.: Tractbased spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31, 1487–1505 (2006)CrossRefGoogle Scholar
  8. 8.
    O’Donnell, L.J., Westin, C.-F., Golby, A.J.: Tract-based morphometry for white matter group analysis. Neuroimage 45, 832–844 (2009)CrossRefGoogle Scholar
  9. 9.
    Yushkevich, P.A., Zhang, H., Simon, T.J., Gee, J.C.: Structure-specific statistical mapping of white matter tracts. Neuroimage 41, 448–461 (2008)CrossRefGoogle Scholar
  10. 10.
    Evans, A.C., Brain Development Cooperative Group: The nih mri study of normal brain development. NeuroImage 30, 184–202 (2006)CrossRefGoogle Scholar
  11. 11.
    Lebel, C., Beaulieu, C.: Longitudinal development of human brain wiring continues from childhood into adulthood. The Journal of Neuroscience 31, 10937–10947 (2011)CrossRefGoogle Scholar
  12. 12.
    Sadeghi, N., Prastawa, M., Fletcher, P.T., Wolff, J., Gilmore, J.H., Gerig, G.: Regional characterization of longitudinal dt-mri to study white matter maturation of the early developing brain. NeuroImage (in press, 2013)Google Scholar
  13. 13.
    Diggle, P., Heagerty, P., Liang, K.Y., Zeger, S.: Analysis of Longitudinal Data, 2nd edn. Oxford University Press, New York (2002)Google Scholar
  14. 14.
    Fitzmaurice, G.M., Laird, N.M., Ware, J.H.: Applied Longitudinal Analysis. Wiley, New York (2004)zbMATHGoogle Scholar
  15. 15.
    Guo, W.: Functional mixed effects models. Biometrics 58, 121–128 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Greven, S., Crainiceanu, C., Caffo, B., Reich, D.: Longitudinal functional principal component analysis. Electron. J. Statist. 4, 1022–1054 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Wand, M.P., Jones, M.C.: Kernel Smoothing. Chapman and Hall, London (1995)zbMATHGoogle Scholar
  18. 18.
    Hall, P., Muller, H.G., Yao, F.: Modelling sparse generalized longitudinal observations with latent gaussian processes. J. R. Statist. Soc. B 70, 703–723 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Fan, J., Zhang, W.: Simultaneous confidence bands and hypothesis testing in varying-coefficient models. Scand. J. Statist. 27(4), 715–731 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    van der Vaar, A.W., Wellner, J.A.: Weak Convergence and Empirical Processes. Springer-Verlag Inc. (1996)Google Scholar
  21. 21.
    Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophysical Journal 66, 259–267 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ying Yuan
    • 1
  • John H. Gilmore
    • 2
  • Xiujuan Geng
    • 2
  • Martin A. Styner
    • 2
    • 3
  • Kehui Chen
    • 4
  • Jane-ling Wang
    • 5
  • Hongtu Zhu
    • 6
    • 7
  1. 1.Department of BiostatisticsSt. Jude Children’s Research HospitalMemphisUSA
  2. 2.Department of Psychiatry, and Biomedical Research Imaging CenterUniversity of North Carolina at Chapel HillChapel HillUSA
  3. 3.Department of Computer ScienceUniversity of North Carolina at Chapel HillChapel HillUSA
  4. 4.Department of StatisticsUniversity of PittsburghUSA
  5. 5.Department of StatisticsUniversity of California at DavisUSA
  6. 6.Department of BiostatisticsUniversity of North Carolina at Chapel HillChapel HillUSA
  7. 7.Biomedical Research Imaging CenterUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations