Sparse Deformable Models with Application to Cardiac Motion Analysis

  • Yang Yu
  • Shaoting Zhang
  • Junzhou Huang
  • Dimitris Metaxas
  • Leon Axel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7917)


Deformable models have been widely used with success in medical image analysis. They combine bottom-up information derived from image appearance cues, with top-down shape-based constraints within a physics-based formulation. However, in many real world problems the observations extracted from the image data often contain gross errors, which adversely affect the deformation accuracy. To alleviate this issue, we introduce a new family of deformable models that are inspired from compressed sensing, a technique for efficiently reconstructing a signal based on its sparseness in some domain. In this problem, we employ sparsity to represent the outliers or gross errors, and combine it seamlessly with deformable models. The proposed new formulation is applied to the analysis of cardiac motion, using tagged magnetic resonance imaging (tMRI), where the automated tagging line tracking results are very noisy due to the poor image quality. Our new deformable models track the heart motion robustly, and the resulting strains are consistent with those calculated from manual labels.


Control Point Internal Force Deformable Model Active Contour Model Medical Image Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amini, A., Chen, Y., Curwen, R., Mani, V., Sun, J.: Coupled B-snake grids and constrained thin-plate splines for analysis of 2-D tissue deformations from tagged MRI. IEEE Transactions on Medical Imaging 17(3), 344–356 (1998)CrossRefGoogle Scholar
  2. 2.
    van Assen, H.C., Danilouchkine, M.G., Frangi, A.F., Ords, S., Westenberg, J.J., Reiber, J.H., Lelieveldt, B.P.: SPASM: A 3D-ASM for segmentation of sparse and arbitrarily oriented cardiac MRI data. Medical Image Analysis 10(2), 286–303 (2006)CrossRefGoogle Scholar
  3. 3.
    Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52(2), 489–509 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Chen, T., Wang, X., Chung, S., Metaxas, D., Axel, L.: Automated 3D motion tracking using Gabor filter bank, robust point matching, and deformable models. IEEE Transactions on Medical Imaging 29(1), 1–11 (2010)CrossRefGoogle Scholar
  5. 5.
    Chuang, J.S., Zemljic-Harpf, A., Ross, R.S., Frank, L.R., McCulloch, A.D., Omens, J.H.: Determination of three-dimensional ventricular strain distributions in gene-targeted mice using tagged MRI. MRM 64(5), 1281–1288 (2010)CrossRefGoogle Scholar
  6. 6.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)CrossRefGoogle Scholar
  7. 7.
    McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis. In: MMBIA, pp. 171–180 (1996)Google Scholar
  8. 8.
    Metaxas, D.N.: Physics-based deformable models: Applications to computer vision, graphics, and medical imaging, 1st edn. Kluwer Academic Publishers (1996)Google Scholar
  9. 9.
    Myronenko, A., Song, X.: Point set registration: Coherent point drift. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(12), 2262–2275 (2010)CrossRefGoogle Scholar
  10. 10.
    Nealen, A., Müller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based deformable models in computer graphics. Computer Graphics Forum 25(4), 809–836 (2006)CrossRefGoogle Scholar
  11. 11.
    Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. TPAMI 22(3), 266–280 (2000)CrossRefGoogle Scholar
  12. 12.
    Radeva, P., Amini, A.A., Huang, J.: Deformable B-solids and implicit snakes for 3D localization and tracking of SPAMM MRI data. Computer Vision and Image Understanding 66(2), 163–178 (1997)CrossRefGoogle Scholar
  13. 13.
    Shen, D., Davatzikos, C.: An adaptive-focus deformable model using statistical and geometric information. TPAMI 22(8), 906–913 (2000)CrossRefGoogle Scholar
  14. 14.
    Shen, T., Huang, X., Li, H., Kim, E., Zhang, S., Huang, J.: A 3D Laplacian-driven parametric deformable model. In: ICCV, pp. 279–286 (2011)Google Scholar
  15. 15.
    Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface editing. In: SPG, pp. 175–184. ACM (2004)Google Scholar
  16. 16.
    Terzopoulos, D., Witkin, A., Kass, M.: Constraints on deformable models: Recovering 3D shape and nonrigid motion. Artificial Intelligence 36(1), 91–123 (1988)zbMATHCrossRefGoogle Scholar
  17. 17.
    Tustison, N., Amini, A.: Biventricular myocardial strains via nonrigid registration of AnFigatomical NURBS models. IEEE Transactions on Medical Imaging 25(1), 94–112 (2006)CrossRefGoogle Scholar
  18. 18.
    Vogler, C., Goldenstein, S., Stolfi, J., Pavlovic, V., Metaxas, D.: Outlier rejection in high-dimensional deformable models. IVC 25(3), 274–284 (2007)CrossRefGoogle Scholar
  19. 19.
    Wang, H., Amini, A.A.: Cardiac motion and deformation recovery from MRI: A review. IEEE Transactions on Medical Imaging 31(2), 487–503 (2012)CrossRefGoogle Scholar
  20. 20.
    Wang, X., Chen, T., Zhang, S., Metaxas, D., Axel, L.: LV motion and strain computation from tMRI based on meshless deformable models. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 636–644. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Young, A.A., French, B.A., Yang, Z., Cowan, B.R., Gilson, W.D., Berr, S.S., Kramer, C.M., Epstein, F.H.: Reperfused myocardial infarction in mice: 3D mapping of late gadolinium enhancement and strain. JCMR 8(5), 685–692 (2006)Google Scholar
  22. 22.
    Zhang, S., Wang, X., Metaxas, D., Chen, T., Axel, L.: Lv surface reconstruction from sparse tmri using laplacian surface deformation and optimization. In: ISBI 2009, pp. 698–701 (2009)Google Scholar
  23. 23.
    Zhang, S., Zhan, Y., Dewan, M., Huang, J., Metaxas, D.N., Zhou, X.S.: Towards robust and effective shape modeling: Sparse shape composition. Medical Image Analysis 16(1), 265–277 (2012)CrossRefGoogle Scholar
  24. 24.
    Zhong, J., Liu, W., Yu, X.: Characterization of three-dimensional myocardial deformation in the mouse heart: An MR tagging study. JMRI 27(6), 1263–1270 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yang Yu
    • 1
  • Shaoting Zhang
    • 1
  • Junzhou Huang
    • 2
  • Dimitris Metaxas
    • 1
  • Leon Axel
    • 3
  1. 1.Department of Computer ScienceRutgers UniversityPiscatawayUSA
  2. 2.Computer Science and EngineeringUniversity of Texas at ArlingtonUSA
  3. 3.Radiology DepartmentNew York UniversityNew YorkUSA

Personalised recommendations