Advertisement

Data-Driven Interactive 3D Medical Image Segmentation Based on Structured Patch Model

  • Sang Hyun Park
  • Il Dong Yun
  • Sang Uk Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7917)

Abstract

In this paper, we present a novel three dimensional interactive medical image segmentation method based on high level knowledge of training set. Since the interactive system should provide intermediate results to an user quickly, insufficient low level models are used for most of previous methods. To exploit the high level knowledge within a short time, we construct a structured patch model that consists of multiple corresponding patch sets. The structured patch model includes the spatial relationships between neighboring patch sets and the prior knowledge of the corresponding patch set on each local region. The spatial relationships accelerate the search of corresponding patch in test time, while the prior knowledge improves the segmentation accuracy. The proposed framework provides not only fast editing tool, but the incremental learning system through adding the segmentation result to the training set. Experiments demonstrate that the proposed method is useful for fast and accurate segmentation of target objects from the multiple medical images.

Keywords

interactive segmentation 3D medical image structured patch model localized classifier 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coupe, P., Manjon, J.V., Fonov, V., Pruessner, J., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. Neuroimage 54(2), 940–954 (2011)CrossRefGoogle Scholar
  2. 2.
    Rousseau, F., Habas, P.A., Studholme, C.: Human brain labeling using image similarities. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (2011)Google Scholar
  3. 3.
    Lee, S., Park, S.H., Shim, H., Yun, I.D., Lee, S.U.: Optimization of local shape and appearance probabilities for segmentation of knee cartilage in 3-D MR images. Computer Vision and Image Understanding 115(12), 1710–1720 (2011)CrossRefGoogle Scholar
  4. 4.
    Top, A., Hamarneh, G., Abugharbieh, R.: Active Learning for Interactive 3D Image Segmentation. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 603–610. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. International Journal of Computer Vision 70(2), 109–131 (2006)CrossRefGoogle Scholar
  6. 6.
    Shim, H., Chang, S., Tao, C., Wang, J., Kwoh, C., Bae, K.: Knee cartilage: efficient and reproducible segmentation on high-spatial-resolution MR images with the semiautomated graph-cut algorithm method. Radiology 251(2), 548–556 (2009)CrossRefGoogle Scholar
  7. 7.
    Grady, L.: Random walks for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(11), 1768–1783 (2006)CrossRefGoogle Scholar
  8. 8.
    Pohle, R., Toennies, K.D.: Segmentation of medical images using adaptive region growing. In: Proc. SPIE M.I. (2001)Google Scholar
  9. 9.
    Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: A randomized correspondence algorithm for structural image editing. In: Proc. SIGGRAPH (2009)Google Scholar
  10. 10.
    Barnes, C., Shechtman, E., Goldman, D.B., Finkelstein, A.: The generalized PatchMatch correspondence algorithm. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 29–43. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Shim, H., Kwoh, C., Yun, I., Lee, S., Bae, K.: Simultaneous 3-d segmentation of three bone compartments on high resolution knee mr images from osteoarthritis initiative (oai) using graph-cuts. In: Proc. SPIE M.I. (2009)Google Scholar
  12. 12.
    Rother, C., Kolmogorov, V., Blake, A.: “GrabCut” - Interactive foreground extraction using iterated graph cuts. In: Proc. SIGGRAPH (2004)Google Scholar
  13. 13.
    Mory, B., Ardon, R.: Non-euclidean image-adaptive radial basis functions for 3D interactive segmentation. In: Proc. International Conference on Computer Vision (2009)Google Scholar
  14. 14.
    Wang, D., Yan, C., Shan, S., Chen, X.: Active Learning for Interactive Segmentation with Expected Confidence Change. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part I. LNCS, vol. 7724, pp. 790–802. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Liu, C., Yuen, J., Torralba, A., Sivic, J., Freeman, W.T.: SIFT flow: Dense correspondence across different scenes. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 28–42. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. Medical Image Analysis 12(6), 731–741 (2008)CrossRefGoogle Scholar
  17. 17.
    Bleyer, M., Rhemann, C., Rother, C.: PatchMatch stereo - stereo matching with slanted support windows. In: Proc. BMVC (2011)Google Scholar
  18. 18.
    Zhang, H., Fang, T., Chen, X., Zhao, Q., Quan, L.: Partial similarity based nonparametric scene parsing in certain environment. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (2011)Google Scholar
  19. 19.
    Gould, S., Zhang, Y.: patchMatchGraph: Building a graph of dense patch correspondences for label transfer. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 439–452. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Bai, X., Wang, J., Simons, D., Sapiro, G.: Video snapcut: robust video object cutout using localized classifiers. In: Proc. SIGGRAPH (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sang Hyun Park
    • 1
  • Il Dong Yun
    • 2
  • Sang Uk Lee
    • 1
  1. 1.Electrical Engineering, ASRI, INMCSeoul National UniversityKorea
  2. 2.Digital Information EngineeringHankuk University of Foreign StudiesKorea

Personalised recommendations