Advertisement

Diffeomorphic Metric Mapping of Hybrid Diffusion Imaging Based on BFOR Signal Basis

  • Jia Du
  • A. Pasha Hosseinbor
  • Moo K. Chung
  • Barbara B. Bendlin
  • Gaurav Suryawanshi
  • Andrew L. Alexander
  • Anqi Qiu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7917)

Abstract

In this paper, we propose a large deformation diffeomorphic metric mapping algorithm to align multiple b-value diffusion weighted imaging (mDWI) data, specifically acquired via hybrid diffusion imaging (HYDI), denoted as LDDMM-HYDI. We adopt the work given in Hosseinbor et al. (2012) and represent the q-space diffusion signal with the Bessel Fourier orientation reconstruction (BFOR) signal basis. The BFOR framework provides the representation of mDWI in the q-space and thus reduces memory requirement. In addition, since the BFOR signal basis is orthonormal, the L 2 norm that quantifies the differences in q-space signals of any two mDWI datasets can be easily computed as the sum of the squared differences in the BFOR expansion coefficients. In this work, we show that the reorientation of the q-space signal due to spatial transformation can be easily defined on the BFOR signal basis. We incorporate the BFOR signal basis into the LDDMM framework and derive the gradient descent algorithm for LDDMM-HYDI with explicit orientation optimization. Using real HYDI datasets, we show that it is important to consider the variation of mDWI reorientation due to a small change in diffeomorphic transformation in the LDDMM-HYDI optimization.

Keywords

Diffusion Tensor Imaging Orientation Distribution Function Diffusion Signal Gradient Descent Algorithm Spatial Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander, D., Pierpaoli, C., Basser, P., Gee, J.: Spatial transformation of diffusion tensor magnetic resonance images. IEEE Trans. on Medical Imaging 20, 1131–1139 (2001)CrossRefGoogle Scholar
  2. 2.
    Cetingul, H., Afsari, B., Vidal, R.: An algebraic solution to rotation recovery in hardi from correspondences of orientation distribution functions. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 38–41 (May 2012)Google Scholar
  3. 3.
    Dhollander, T., Van Hecke, W., Maes, F., Sunaert, S., Suetens, P.: Spatial transformations of high angular resolution diffusion imaging data in Q-space. In: MICCAI CDMRI Workshop, pp. 73–83 (2010)Google Scholar
  4. 4.
    Dhollander, T., Veraart, J., Van Hecke, W., Maes, F., Sunaert, S., Sijbers, J., Suetens, P.: Feasibility and advantages of diffusion weighted imaging atlas construction in Q-space. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 166–173. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Dorst, L.: First order error propagation of the procrustes method for 3d attitude estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(2), 221–229 (2005)CrossRefGoogle Scholar
  6. 6.
    Du, J., Goh, A., Qiu, A.: Diffeomorphic metric mapping of high angular resolution diffusion imaging based on riemannian structure of orientation distribution functions. IEEE Transactions on Medical Imaging 31(5), 1021–1033 (2012)CrossRefGoogle Scholar
  7. 7.
    Du, J., Younes, L., Qiu, A.: Whole brain diffeomorphic metric mapping via integration of sulcal and gyral curves, cortical surfaces, and images. NeuroImage 56(1), 162–173 (2011)CrossRefGoogle Scholar
  8. 8.
    Geng, X., Ross, T.J., Gu, H., Shin, W., Zhan, W., Chao, Y.P., Lin, C.P., Schuff, N., Yang, Y.: Diffeomorphic image registration of diffusion mri using spherical harmonics. IEEE Transactions on Medical Imaging 30(3), 747–758 (2011)CrossRefGoogle Scholar
  9. 9.
    Hosseinbor, A.P., Chung, M.K., Wu, Y.C., Alexander, A.L.: Bessel fourier orientation reconstruction (bfor): An analytical diffusion propagator reconstruction for hybrid diffusion imaging and computation of q-space indices. NeuroImage 64, 650–670 (2013)CrossRefGoogle Scholar
  10. 10.
    Hsu, Y.C., Hsu, C.H., Tseng, W.Y.I.: A large deformation diffeomorphic metric mapping solution for diffusion spectrum imaging datasets. NeuroImage 63(2), 818–834 (2012)CrossRefGoogle Scholar
  11. 11.
    Raffelt, D., Tournier, J.D., Fripp, J., Crozier, S., Connelly, A., Salvado, O.: Symmetric diffeomorphic registration of fibre orientation distributions. NeuroImage 56(3), 1171–1180 (2011)CrossRefGoogle Scholar
  12. 12.
    Wu, Y.C., Alexander, A.L.: Hybrid diffusion imaging. NeuroImage 36(3), 617–629 (2007)CrossRefGoogle Scholar
  13. 13.
    Yap, P.T., Shen, D.: Spatial transformation of dwi data using non-negative sparse representation. IEEE Transactions on Medical Imaging 31(11), 2035–2049 (2012)CrossRefGoogle Scholar
  14. 14.
    Yeo, B., Vercauteren, T., Fillard, P., Peyrat, J.M., Pennec, X., Golland, P., Ayache, N., Clatz, O.: Dt-refind: Diffusion tensor registration with exact finite-strain differential. IEEE Transactions on Medical Imaging 28(12), 1914–1928 (2009)CrossRefGoogle Scholar
  15. 15.
    Zhang, P., Niethammer, M., Shen, D., Yap, P.-T.: Large deformation diffeomorphic registration of diffusion-weighted images. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 171–178. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jia Du
    • 1
  • A. Pasha Hosseinbor
    • 3
    • 4
  • Moo K. Chung
    • 4
    • 5
  • Barbara B. Bendlin
    • 6
  • Gaurav Suryawanshi
    • 4
  • Andrew L. Alexander
    • 3
    • 4
  • Anqi Qiu
    • 1
    • 2
  1. 1.Department of BioengineeringNational University of SingaporeSingapore
  2. 2.Clinical Imaging Research CenterNational University of SingaporeSingapore
  3. 3.Department of Medical PhysicsUniversity of Wisconsin-MadisonUSA
  4. 4.Waisman Laboratory for Brain Imaging and BehaviorUniversity of Wisconsin-MadisonUSA
  5. 5.Biostatistics and Medical InformaticsUniversity of Wisconsin-MadisonUSA
  6. 6.Department of MedicineUniversity of Wisconsin-MadisonUSA

Personalised recommendations