Fiber Connectivity Integrated Brain Activation Detection

  • Burak Yoldemir
  • Bernard Ng
  • Todd S. Woodward
  • Rafeef Abugharbieh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7917)


Inference of brain activation through the analysis of functional magnetic resonance imaging (fMRI) data is seriously confounded by the high level of noise in the observations. To mitigate the effects of noise, we propose incorporating anatomical connectivity into brain activation detection as motivated by how the functional integration of distinct brain areas is facilitated via neural fiber pathways. In this work, we formulate activation detection as a probabilistic graph-based segmentation problem with fiber networks estimated from diffusion MRI (dMRI) data serving as a prior. Our approach is reinforced with a data-driven scheme for refining the connectivity prior to reflect the fact that not all fibers are necessarily deployed during a given cognitive task as well as to account for false fiber tracts arising from limitations of dMRI tractography. Validating on real clinical data collected from 7 schizophrenia patients and 13 matched healthy controls, we show that incorporating anatomical connectivity significantly increases sensitivity in detecting task activation in controls compared to existing univariate techniques. Further, we illustrate how our model enables the detection of significant group activation differences between controls and patients that are missed with standard methods.


activation detection connectivity dMRI fMRI random walker 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.B., Frith, C.D., Frackowiak, R.S.J.: Statistical Parametric Maps in Functional Imaging: A General Linear Approach. Hum. Brain Mapp. 2, 189–210 (1995)CrossRefGoogle Scholar
  2. 2.
    Rogers, B.P., Morgan, V.L., Newton, A.T., Gore, J.C.: Assessing Functional Connectivity in the Human Brain by fMRI. Magn. Reson. Imaging 25, 1347–1357 (2007)CrossRefGoogle Scholar
  3. 3.
    Descombes, X., Kruggel, F., von Cramon, D.Y.: Spatio-Temporal fMRI Analysis Using Markov Random Fields. IEEE Trans. Med. Imaging 17, 1028–1039 (1998)CrossRefGoogle Scholar
  4. 4.
    Penny, W.D., Trujillo-Barreto, N.J., Friston, K.J.: Bayesian fMRI Time Series Analysis with Spatial Priors. NeuroImage 24, 350–362 (2005)CrossRefGoogle Scholar
  5. 5.
    Ng, B., Abugharbieh, R., Hamarneh, G., McKeown, M.J.: Random Walker Based Estimation and Spatial Analysis of Probabilistic fMRI Activation Maps. In: MICCAI fMRI Data Analysis Workshop, pp. 37–44 (2009)Google Scholar
  6. 6.
    Ng, B., Abugharbieh, R., Varoquaux, G., Poline, J.B., Thirion, B.: Connectivity-Informed fMRI Activation Detection. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 285–292. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Smith, S.M., Fox, P.T., Miller, K.L., Glahn, D.C., Fox, P.M., Mackay, C.E., Filippini, N., Watkins, K.E., Toro, R., Laird, A.R., Beckmann, C.F.: Correspondence of the Brain’s Functional Architecture During Activation and Rest. Proc. Natl. Acad. Sci. 106, 13040–13045 (2009)CrossRefGoogle Scholar
  8. 8.
    Honey, C.J., Thivierge, J.P., Sporns, O.: Can Structure Predict Function in the Human Brain? NeuroImage 52, 766–776 (2010)CrossRefGoogle Scholar
  9. 9.
    Damoiseaux, J.S., Greicius, M.D.: Greater than the Sum of its Parts: A Review of Studies Combining Structural Connectivity and Resting-State Functional Connectivity. Brain Struct. Funct. 213, 525–533 (2009)CrossRefGoogle Scholar
  10. 10.
    Ng, B., Varoquaux, G., Poline, J.-B., Thirion, B.: A Novel Sparse Graphical Approach for Multimodal Brain Connectivity Inference. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 707–714. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Venkataraman, A., Rathi, Y., Kubicki, M., Westin, C.F., Golland, P.: Joint Modeling of Anatomical and Functional Connectivity for Population Studies. IEEE Trans. Med. Imaging 31, 164–182 (2012)CrossRefGoogle Scholar
  12. 12.
    Chen, H., Li, K., Zhu, D., Zhang, T., Jin, C., Guo, L., Li, L., Liu, T.: Inferring Group-Wise Consistent Multimodal Brain Networks via Multi-view Spectral Clustering. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 297–304. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Grady, L.: Multilabel Random Walker Image Segmentation Using Prior Models. In: Proc. IEEE Comp. Soc. Conf. Comp. Vision Pattern Recog., vol. 1, pp. 763–770 (2005)Google Scholar
  14. 14.
    Grady, L.: Random Walks for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1768–1783 (2006)CrossRefGoogle Scholar
  15. 15.
    Hartvig, N.V., Jensen, J.L.: Spatial Mixture Modeling of fMRI Data. Hum. Brain Mapp. 11, 233–248 (2000)CrossRefGoogle Scholar
  16. 16.
    Skudlarski, P., Jagannathan, K., Calhoun, V.D., Hampson, M., Skudlarska, B.A., Pearlson, G.: Measuring Brain Connectivity: Diffusion Tensor Imaging Validates Resting State Temporal Correlations. NeuroImage 43, 554–561 (2008)CrossRefGoogle Scholar
  17. 17.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data via the EM Algorithm. J. R. Statist. Soc. B 39, 1–38 (1977)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Nichols, T., Hayasaka, S.: Controlling the Familywise Error Rate in Functional Neuroimaging: A Comparative Review. Stat. Methods Med. Research 12, 419–446 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Friston, K.J., Penny, W.: Posterior Probability Maps and SPMs. NeuroImage 19, 1240–1249 (2003)CrossRefGoogle Scholar
  20. 20.
    Genovese, C.R., Lazar, N.A., Nichols, T.: Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate. NeuroImage 15, 870–878 (2002)CrossRefGoogle Scholar
  21. 21.
    Thyreau, B., Thirion, B., Flandin, G., Poline, J.-B.: Anatomo-Functional Description of the Brain: A Probabilistic Approach. In: IEEE Int. Conf. Acoustics, Speech and Signal Proc., vol. 5, pp. 14–19 (2006)Google Scholar
  22. 22.
    Michel, V., Gramfort, A., Varoquaux, G., Eger, E., Keribin, C., Thirion, B.: A Supervised Clustering Approach for fMRI-based Inference of Brain States. Patt. Recog. 45, 2041–2049 (2012)zbMATHCrossRefGoogle Scholar
  23. 23.
    Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M.: Advances in Functional and Structural MR Image Analysis and Implementation as FSL. NeuroImage 23, 208–219 (2004)CrossRefGoogle Scholar
  24. 24.
    Toussaint, N., Souplet, J.C., Fillard, P.: MedINRIA: Medical Image Navigation and Research Tool by INRIA. In: MICCAI Workshop on Interaction in Medical Image Analysis and Visualization, pp. 1–8 (2007)Google Scholar
  25. 25.
    Wang, L., Metzak, P.D., Honer, W.G., Woodward, T.S.: Impaired Efficiency of Functional Networks Underlying Episodic Memory-for-Context in Schizophrenia. J. Neurosci. 30, 13171–13179 (2010)CrossRefGoogle Scholar
  26. 26.
    Eichenbaum, H.: Conscious Awareness, Memory and the Hippocampus. Nat. Neurosci. 2, 775–776 (1999)CrossRefGoogle Scholar
  27. 27.
    Henke, K., Weber, B., Kneifel, S., Wieser, H.G., Buck, A.: Human Hippocampus Associates Information in Memory. Proc. Natl. Acad. Sci. 96, 5884–5889 (1999)CrossRefGoogle Scholar
  28. 28.
    Giovanello, K.S., Schnyer, D.M., Verfaellie, M.: A Critical Role for the Anterior Hippocampus in Relational Memory: Evidence from an fMRI Study Comparing Associative and Item Recognition. Hippocampus 14, 5–8 (2004)CrossRefGoogle Scholar
  29. 29.
    Heinrichs, W., Zakzanis, K.K.: Neurocognitive Deficit in Schizophrenia: A Quantitative Review of the Evidence. Neuropsychology 12, 426–445 (1998)CrossRefGoogle Scholar
  30. 30.
    Waters, F., Woodward, T.S., Allen, P., Aleman, A., Sommer, I.: Self-recognition Deficits in Schizophrenia Patients with Auditory Hallucinations: A Meta-analysis of the Literature. Schizophrenia Bulletin 38, 741–750 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Burak Yoldemir
    • 1
  • Bernard Ng
    • 2
  • Todd S. Woodward
    • 3
  • Rafeef Abugharbieh
    • 1
  1. 1.Biomedical Signal and Image Computing LabThe University of British ColumbiaCanada
  2. 2.Parietal TeamINRIA SaclayFrance
  3. 3.Department of PsychiatryThe University of British ColumbiaCanada

Personalised recommendations