Multi-layer Deformation Estimation for Fluoroscopic Imaging

  • J. Samuel Preston
  • Caleb Rottman
  • Arvidas Cheryauka
  • Larry Anderton
  • Ross T. Whitaker
  • Sarang Joshi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7917)


Accurate estimation of motion in fluoroscopic imaging sequences is critical for improved frame interpolation/extrapolation, tracking of surgical instruments, and Digital Subtraction Angiography (DSA). The projection of multiple transparent objects undergoing multiple complicated deformations in 3D onto a single 2D view makes this motion estimation problem quite challenging and ill-suited to existing techniques used in medical image analysis. We propose a novel method for jointly decomposing the observed image into a set of additive layers each associated with its corresponding smooth nonlinear deformation, which together model the non-smooth motion observed in the projection images across several frames. A total variation based regularization penalty is used to incorporate the known structure of the input frames for well posedness of the layer separation problem. We present the use of this model for frame interpolation and artifact reduction in DSA. Results are included from synthetic and real clinical datasets.


Digital Subtraction Angiography Motion Estimation Fluoroscopic Image Residual Layer Layer Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auvray, V., Bouthemy, P., Liénard, J.: Joint motion estimation and layer segmentation in transparent image sequenc: application to noise reduction in x-ray image sequences. EURASIP J. Adv. Signal Process. 2009, 19:1–19:21 (2009)Google Scholar
  2. 2.
    Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences 2(1), 183–202 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Beg, M.F., Miller, M.I., Trouv, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. IJCV 61(2), 139–157 (2005)CrossRefGoogle Scholar
  4. 4.
    Chen, Y., Chang, T., Zhou, C., Fang, T.: Gradient domain layer separation under independent motion. In: ICCV, pp. 694–701. IEEE (2009)Google Scholar
  5. 5.
    Christensen, G.E., Rabbitt, R.D., Miller, M.I.: Deformable templates using large deformation kinematics. Transactions on Image Processing 5, 1435–1447 (1996)CrossRefGoogle Scholar
  6. 6.
    Close, R., et al.: Accuracy assessment of layer decomposition using simulated angiographic image sequences. Transactions on Medical Imaging 20(10), 990–998 (2001)CrossRefGoogle Scholar
  7. 7.
    Darrell, T., Simonecelli, E.: Nulling filters and the separation of transparent motions. In: Computer Vision and Pattern Recognition, pp. 738–739. IEEE (1993)Google Scholar
  8. 8.
    Jasper, J.: Role of digital subtraction fluoroscopic imaging in detecting intravascular injections. Pain Physician 6(3), 369–372 (2003)Google Scholar
  9. 9.
    Osher, S., et al.: An iterative regularization method for total variation-based image restoration. Multiscale Modeling & Simulation 4(2), 460–489 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Pingault, M., et al.: A robust multiscale b-spline function decomposition for estimating motion transparency. Tran. on Image Processing 12(11), 1416–1426 (2003)CrossRefGoogle Scholar
  11. 11.
    Ramírez-Manzanares, A., Rivera, M., Kornprobst, P., Lauze, F.: A variational approach for multi-valued velocity field estimation in transparent sequences. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 227–238. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Rueckert, D., Aljabar, P., Heckemann, R.A., Hajnal, J.V., Hammers, A.: Diffeomorphic registration using B-splines. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006, Part II. LNCS, vol. 4191, pp. 702–709. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Sarel, B., Irani, M.: Separating transparent layers through layer information exchange. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 328–341. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Shizawa, M., Mase, K.: Simultaneous multiple optical flow estimation. In: International Conference on Pattern Recognition, vol. 1, pp. 274–278. IEEE (1990)Google Scholar
  15. 15.
    Stuke, I., et al.: Estimation of multiple motions using block matching and markov random fields. In: Proceedings of SPIE, vol. 5308, pp. 486–496 (2004)Google Scholar
  16. 16.
    Szeliski, R., Avidan, S., Anandan, P.: Layer extraction from multiple images containing reflections and transparency. In: CVPR, vol. 1, pp. 246–253. IEEE (2000)Google Scholar
  17. 17.
    Toro, J., Owens, F., Medina, R.: Using known motion fields for image separation in transparency. Pattern Recognition Letters 24(1), 597–605 (2003)CrossRefGoogle Scholar
  18. 18.
    Wang, J., Adelson, E.: Representing moving images with layers. Transactions on Image Processing 3(5), 625–638 (1994)CrossRefGoogle Scholar
  19. 19.
    Xiao, J., Shah, M.: Motion layer extraction in the presence of occlusion using graph cuts. Pattern Analysis and Machine Intelligence 27(10), 1644–1659 (2005)CrossRefGoogle Scholar
  20. 20.
    Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. Tech. rep., CAM UCLA Tech. Rep. 08-34 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. Samuel Preston
    • 1
  • Caleb Rottman
    • 1
  • Arvidas Cheryauka
    • 2
  • Larry Anderton
    • 2
  • Ross T. Whitaker
    • 1
  • Sarang Joshi
    • 1
  1. 1.Scientific Computing and Imaging (SCI) InstituteUniversity of UtahUSA
  2. 2.GE HealthcareUSA

Personalised recommendations