Advertisement

Matched Signal Detection on Graphs: Theory and Application to Brain Network Classification

  • Chenhui Hu
  • Lin Cheng
  • Jorge Sepulcre
  • Georges El Fakhri
  • Yue M. Lu
  • Quanzheng Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7917)

Abstract

We develop a matched signal detection (MSD) theory for signals with an intrinsic structure described by a weighted graph. Hypothesis tests are formulated under different signal models. In the simplest scenario, we assume that the signal is deterministic with noise in a subspace spanned by a subset of eigenvectors of the graph Laplacian. The conventional matched subspace detection can be easily extended to this case. Furthermore, we study signals with certain level of smoothness. The test turns out to be a weighted energy detector, when the noise variance is negligible. More generally, we presume that the signal follows a prior distribution, which could be learnt from training data. The test statistic is then the difference of signal variations on associated graph structures, if an Ising model is adopted. Effectiveness of the MSD on graph is evaluated both by simulation and real data. We apply it to the network classification problem of Alzheimer’s disease (AD) particularly. The preliminary results demonstrate that our approach is able to exploit the sub-manifold structure of the data, and therefore achieve a better performance than the traditional principle component analysis (PCA).

Keywords

Matched subspace detection graph-structured data graph Laplacian brain networks classification Alzheimer’s disease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Scharf, L.L., Friedlander, B.: Matched Subspace Detectors. IEEE Trans. on Signal Proc. 42, 2146–2157 (1994)CrossRefGoogle Scholar
  2. 2.
    Li, Z., Li, Q., Yu, X., Conti, P.S., Leahy, R.M.: Lesion Detection in Dynamic FDG-PEG Using Matched Subspace Detection. IEEE Trans. on Medical Imaging 28, 230–240 (2009)CrossRefGoogle Scholar
  3. 3.
    Belkin, M., Niyogi, P.: Using Manifold Structure for Partially Labeled Classification. In: Advances in Neural Information Processing Systems, vol. 15, pp. 929–936 (2002)Google Scholar
  4. 4.
    Saul, L.K., Weinberger, K.Q., Ham, J.H., Sha, F., Lee, D.D.: Spectral Methods for Dimensionality Reduction. In: Chapelle, O., Schoelkopf, B., Zien, A. (eds.) Semisupervised Learning, pp. 293–308. MIT Press, Cambridge (2006)Google Scholar
  5. 5.
    Cai, D., He, X., Han, J.: Spectral regression: A Unified Approach for Sparse Subspace Learning. In: 7th IEEE Int. Conf. on Data Mining, pp. 73–82 (2007)Google Scholar
  6. 6.
    Addario-Berry, L., Broutin, N., Devroye, L., Lugosi, G.: On Combinatorial Testing Problems. The Annals of Statistics 38, 3063–3092 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Arias-Castro, E., Candes, E.J., Durand, A.: Detection of an Anomalous Cluster in a Network. The Annals of Statistics 39, 278–304 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Brookmeyer, R., Johnson, E., Ziegler-Graham, K., Arrighi, H.M.: Forecasting the Global Burden of Alzheimers Disease. Alzheimer’s and Dementia 3, 186–191 (2007)CrossRefGoogle Scholar
  9. 9.
    Mintun, M.A., Larossa, G.N., Sheline, Y.I., Dence, C.S., Lee, S.Y., Mach, R.H., Klunk, W.E., Mathis, C.A., DeKosky, S.T., Morris, J.C.: [11C] PIB in a Nondemented Population Potential Antecedent Marker of Alzheimer Disease. Neurology 67, 446–452 (2006)CrossRefGoogle Scholar
  10. 10.
    Zhu, X., Rabbat, M.: Approximating Signals Supported on Graphs. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing, pp. 3921–3924 (2012)Google Scholar
  11. 11.
    Shuman, D.I., Ricaud, B., Vandergheynst, P.: A Windowed Graph Fourier Transform. In: IEEE Statistical Signal Processing Workshop (SSP), pp. 133–136 (2012)Google Scholar
  12. 12.
    Bougleux, S., Elmoataz, A., Melkemi, M.: Discrete Regularization on Weighted Graphs for Image and Mesh Filtering. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 128–139. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Spielman, D.A.: Spectral Graph Theory and Its Applications. In: 48th Annual IEEE Symposium on Foundations of Computer Science, pp. 29–38 (2007)Google Scholar
  14. 14.
    Tipping, E.M., Bishop, C.M.: Probabilistic Principal Component Analysis. Jour. of the Royal Stat. Soci.: Series B (Stat. Meth.) 61, 611–622 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Sharpnack, J., Singh, A.: Identifying Graph-Structured Activation Patterns in Networks. In: Proc. of Neural. Info. Proc. Sys. (2010)Google Scholar
  16. 16.
    Grimmett, G.: Probability on Graphs: Random Processes on Graphs and Lattices, vol. 1. Cambridge University Press (2010)Google Scholar
  17. 17.
    Paredes, J.L., Wang, Z., Arce, G.R., Sadler, B.M.: Compressive Matched Subspace Detection. In: Proc. 17th European Signal Processing Conf., pp. 120–124 (2009)Google Scholar
  18. 18.
    Bassett, D.S., Bullmore, E.: Small-World Brain Networks. The Neuroscientist 12, 512–523 (2006)CrossRefGoogle Scholar
  19. 19.
    Watts, D.J., Strogatz, S.H.: Collective Dynamics of “Small-World” Networks. Nature 2, 393–440 (1998)Google Scholar
  20. 20.
    Buckner, R.L., Sepulcre, J., Talukdar, T., Krienen, F.M., Liu, H., Hedden, T., Andrews-Hanna, J.R., Sperling, R.A., Johnson, K.A.: Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer’s Disease. The Journal of Neuroscience 29, 1860–1873 (2009)CrossRefGoogle Scholar
  21. 21.
    Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. Neuroimage 15, 273–289 (2002)CrossRefGoogle Scholar
  22. 22.
    Huang, S., Li, J., Sun, L., Liu, J., Wu, T., Chen, K., Fleisher, A., Reiman, E., Ye, J.: Learning Brain Connectivity of Alzheimer’s Disease from Neuroimaging Data. In: Advances in Neural Information Processing Systems, vol. 22, pp. 808–816 (2009)Google Scholar
  23. 23.
    Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press (2000)Google Scholar
  24. 24.
    Hu, C., Cheng, L., Sepulcre, J., Fakhri, G.E., Lu, Y.M., Li, Q.: A Graph Theoretical Regression Model for Brain Connectivity Learning of Alzheimer’s Disease. In: Int. Symp. on Biomedical Imaging (2013, to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chenhui Hu
    • 1
    • 2
  • Lin Cheng
    • 3
  • Jorge Sepulcre
    • 1
  • Georges El Fakhri
    • 1
  • Yue M. Lu
    • 2
  • Quanzheng Li
    • 1
  1. 1.Center for Advanced Medical Imaging Science, NMMI, RadiologyMassachusetts General HospitalBostonUSA
  2. 2.School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA
  3. 3.Department of EngineeringTrinity CollegeHartfordUSA

Personalised recommendations