A Framework for Privacy-Aware User Data Trading

  • Johnson Iyilade
  • Julita Vassileva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7899)

Abstract

Data about users is rapidly growing, collected by various online applications and databases. The ability to share user data across applications can offer benefits to user in terms of personalized services, but at the same time poses privacy risks of disclosure of personal information. Hence, there is a need to ensure protection of user privacy while enabling user data sharing for desired personalized services. We propose a policy framework for user data sharing based on the purpose of adaptation. The framework is based on the idea of a market, where applications can offer and negotiate user data sharing with other applications according to an explicit user-editable and negotiable privacy policy that defines the purpose, type of data, retention period and price.

Keywords

Privacy Personalization User Data Sharing Policy Incentives Trust Market Framework 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heckmann, D., Schwartz, T., Brandherm, B., Kröner, A.: Decentralized User Modeling with UserML and GUMO. In: Dolog, P., Vassileva, J. (eds.) Proceedings of the Workshop on Decentralized, Agent Based and Social Approaches to User Modeling, DASUM 2005, at UM 2005, Edinburgh, Scotland, pp. 61–66 (July 2005)Google Scholar
  2. 2.
    Berkovsky, S., Kuflik, T., Ricci, F.: Mediation of User Models for Enhanced Personalization in Recommender Systems. User Modeling and User-Adapted Interaction 18(3), 245–286 (2007)CrossRefGoogle Scholar
  3. 3.
    Carmagnola, F., Cena, F., Gena, C.: User Model Interoperability: a Survey. User Model User-Adapted Interaction 21(3), 285–331 (2011)CrossRefGoogle Scholar
  4. 4.
    Kobsa, A.: Generic User Modeling Systems. User Modeling and User-Adapted Interaction 11, 49–63 (2001)MATHCrossRefGoogle Scholar
  5. 5.
    Fink, J., Kobsa, A.: A Review and Analysis of Commercial User Modeling Servers for Personalization on the World Wide Web. User Modeling and User-Adapted Interaction 10, 209–249 (2000)CrossRefGoogle Scholar
  6. 6.
    Dolog, P., Kay, J., Kummerfeld, B.: Personal Lifelong User Model Clouds. In: Proceeding of the Lifelong User Modeling Workshop at UMAP 2009, Trento, Italy, pp. 1–8 (June 2009)Google Scholar
  7. 7.
    Vassileva, J., McCalla, G., Greer, J.: Multi-Agent Multi-User Modeling. User Modeling and User-Adapted Interaction 13(1), 179–210 (2003)CrossRefGoogle Scholar
  8. 8.
    Prince, R., Davis, H.: IDIUMS: sharing user models through application attributes. Poster presentation. in Proc. User Modeling, Adaptation and Personalization, UMAP 2011, Girona, Spain, pp 40–42. Springer, Heidelberg (2011) ISBN: 978-3-642-22362-4Google Scholar
  9. 9.
    Kay, J., Kummerfeld, B., Lauder, P.: Personis: A server for user models. In: De Bra, P., Brusilovsky, P., Conejo, R. (eds.) AH 2002. LNCS, vol. 2347, pp. 203–212. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Bielikova, M., Kuruc, J.: Sharing User Models for Adaptive Hypermedia Applications. In: Proc. 5th Int. Conf. Intelligent Systems Design and Applications, Washington DC, USA, pp. 506–513 (2005)Google Scholar
  11. 11.
    Wang, Y., Kobsa, A.: Respecting users’ individual privacy constraints in web personalization. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 157–166. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., von Wilamowitz-Moellendorff, M.: Gumo – The General User Model Ontology. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 428–432. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Abel, F., Henze, N., Herder, E., Krause, D.: Linkage, Aggregation, Alignment and Enrichment of Public User Profiles with Mypes. In: Proc. 6th Int. Conf. Semantic Systems (I-SEMANTICS), Graz, Austria, Article No. 11 (September 2010) ISBN: 978-1-4503-0014-8Google Scholar
  14. 14.
    W3C P3P Specification, http://www.w3.org/TR/P3P11/
  15. 15.
    Buffett, S., Jia, K., Liu, S., Spencer, B., Wang, F.: Negotiating exchanges of P3P-Labeled information for compensation. Computational Intelligence 20(4), 663–677 (2004)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Preibusch, S.: Privacy Negotiations with P3P. In: W3C Workshop on Languages for Privacy Policy Negotiation and Semantics-Driven Enforcement, October 17-18 (2006), Ispra, Italy (2006), http://www.w3.org/2006/07/privacy-ws/papers/24-preibusch-negotiation-p3p/ (last accessed: March 14th, 2013)
  17. 17.
    Aperjis, C., Huberman, B.A.: A Market for Unbiased Private Data: Paying Individuals According to their Prvacy Attitudes (2012), http://www.hpl.hp.com/research/scl/papers/datamarket/datamarket.pdf (last accessed: January 10, 2013)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Johnson Iyilade
    • 1
  • Julita Vassileva
    • 1
  1. 1.Computer Science DepartmentUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations