Combinatorial Dynamics and an Elementary Proof of the Continuity of the Topological Entropy at θ =101, in the Milnor Thurston World

  • Solange AranzubíaEmail author
  • Rafael Labarca
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 54)


In the present paper we deal with the Milnor-Thurston world and we present elementary proofs of some results by combining dynamics, combinatory, linear algebra and entropy.


Periodic Orbit Characteristic Polynomial Incidence Matrix Technical Lemma Topological Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Part of this paper is an outgrowth of research during a visit of the authors to IMPA (Brazil). The authors were partially supported by DICYT – USACH (Chile), PCI – IMPA (Brazil) and by the Dirección de Graduados of the USACH. We thanks IMPA and USACH for its support while preparing the present paper.


  1. 1.
    Alseda, L., Llibre, J., Misiurewicz, M.: Combinatorial Dynamics and Entropy in Dimension One. Advenced Series in Nonlinear Dynamics, vol. 5, 2nd edn, pp. xvi + 15. World Scientific, River Edge (2000). ISBN:981-02-4053-8Google Scholar
  2. 2.
    Aranzubía, S., Labarca, R.: On the existence of bubbles of constant entropy in the lexicographical world. prepint (2012)Google Scholar
  3. 3.
    Bamón, R., Labarca, R., Pacifico, M.J., Mañé, R.: The explosion of singular cycles. Publ. Math. IHES 78, 207–232 (1993)CrossRefzbMATHGoogle Scholar
  4. 4.
    Cooper, R.D., Hoare, M.R.: Distributive processes and combinatorial dynamics. J. Stat. Phys. 20(6), 597–628 (1979)MathSciNetCrossRefGoogle Scholar
  5. 5.
    de Melo, W., Van Strien, S.: One-Dimensional Dynamics. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 25. Springer, Berlin/New York (1993)Google Scholar
  6. 6.
    Field, M.: Combinatorial dynamics. Dyn. Syst. 19(3), 217–243 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Guckenheimer, J., Williams, R.F.: Structured stability of Lorenz attractors. Publ. Math IHES 50, 59–72 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kauffman, S., Smolin, L.: Combinatorial dynamics and time in quantum gravity. In: Kowalski-Glikman, J. (ed.) Towards Quantum Gravity: Proceedings of the XXXV International Winter School on Theoretical Physics (Polanica, 1999). Lecture Notes in Physics, vol. 541, pp. 101–129. Springer, Berlin (2000)CrossRefGoogle Scholar
  9. 9.
    Labarca, R.: Bifurcation of contracting singular cycles. Ann. Scient. Ec. Norm. Sup. 4 Serie t. 28, 705–745 (1993)Google Scholar
  10. 10.
    Labarca, R.: A note on the topological classification of Lorenz maps on the interval. In: Blanchard, F., Maass, A., Nogueira, A. (eds.) Topics in Symbolic Dynamics and Applications. London Mathematical Society Lecture Note Series, vol. 279, pp. 229–245. Cambridge University Press (2000)Google Scholar
  11. 11.
    Labarca, R.: Unfolding singular cycles. Notas Soc. Mat. Chile (NS) 1, 38–71 (2001)Google Scholar
  12. 12.
    Labarca, R.: La Entropía Topológica, Propiedades Generales y algunos cálculos en el caso de Milnor-Thurston. XXIV Escuela Venezolana de Matemáticas. EMALCA-Venezuela 2011. Ediciones IVIC (2011)Google Scholar
  13. 13.
    Labarca, R., Moreira, C.: Bifurcation of the essential dynamics of Lorenz maps of the real line and the bifurcation scenario of the linear family. Sci. Sci. A Math. Sci. (NS) 7, 13–29 (2001)Google Scholar
  14. 14.
    Labarca, R., Moreira, C.: Bifurcations of the essential dynamics of Lorenz maps and applications to Lorenz like flows: contributions to the study of the expanding case. Bol. Soc. Bras. Mat. (NS) 32, 107–144 (2001)Google Scholar
  15. 15.
    Labarca, R., Moreira, C.: Essential dynamics for Lorenz maps on the real line and the lexicographical world. Annales de L’Institut H. Poncaré Analyse non Linéaire 23, 683–694 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Labarca, R., Moreira, C.: Bifurcations of the essential dynamics of Lorenz maps on the real line and the bifurcation scenario for Lorenz like flows: the contracting case. Proyecciones 29(3), 247–293 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Labarca, R., Plaza, S.: Bifurcation of discontinuous maps of the interval and palindromic numbers. Bol. Soc. Mat. Mex. (3) 7(1), 99–116 (2001)Google Scholar
  18. 18.
    Labarca, R., Vásquez L.: On the characterization of the kneading sequences associated to injective Lorenz maps of the interval and to orientation preserving homeomorphism of the circle. Bol. Soc. Mat. Mex. 3a Ser. 16(2), 101–116 (2010)Google Scholar
  19. 19.
    Labarca, R., Vásquez, L.: On the characterization of the kneading sequences associated to Lorenz maps of the interval. Bol. Soc. Bras. Mat. (NS) 43(2), 221–245 (2012)Google Scholar
  20. 20.
    Labarca, R., Pumariño, A., Rodriguez, J.A.: On the boundary of topological chaos for the Milnor-Thurston world. Commun. Contemp. Math. 11(9), 1049–1066 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Labarca, R., Moreira, C., Pumariño, A., Rodriguez, J.A.: On bifurcation set for symbolic dynamics in the Milnor-Thurston world. Commun. Contemp. Math. 14(4), 1250024 1–16 (2012)Google Scholar
  22. 22.
    Metropolis, N., Stein, M.L., Stein, P.R.: Stabe states of a nonlinear transformation. Numer. Math. 10, 1–19 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Metropolis, N., Stein, M.L., Stein, P.R.: On finite limit sets for transformations on the unit interval. J. Comb. Theory (A) 15, 25–44 (1973)Google Scholar
  24. 24.
    Mielnik, B.: Combinatorial dynamics. In: Proccedings of the 14th ICGTMP (Seoul, 1985), pp. 265–267. World Scientific, Singapore, (1986). 81B05Google Scholar
  25. 25.
    Milnor, J., Thurston, W.: On iterated maps on the interval. In: Alexander, J.C. (ed.) Dynamical Systems. Lecture Notes in Mathematics, vol. 1342, pp 465–563. Springer, Berlin (1988)Google Scholar
  26. 26.
    Moreira, C.: Maximal invariant sets for restriction of tent and unimodal maps. Anal. Theory Dyn. Syst. 2(2), 385–398 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Departamento de Matemática y Ciencia de la ComputaciónUniversidad de Santiago de Chile (USACH)SantiagoChile

Personalised recommendations