Advertisement

The Focus-Center-Limit Cycle Bifurcation in Discontinuous Planar Piecewise Linear Systems Without Sliding

  • Enrique PonceEmail author
  • Javier Ros
  • Elísabet Vela
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 54)

Abstract

Planar discontinuous piecewise linear systems with two linearity zones, one of them being of focus type, are considered. By using an adequate canonical form under certain hypotheses, the bifurcation of a limit cycle, when the focus changes its stability after becoming a linear center, is completely characterized. Analytic expressions for the amplitude, period and characteristic multiplier of the bifurcating limit cycle are provided. The studied bifurcation appears in real world applications, as shown with the analysis of an electronic Wien bridge oscillator without symmetry.

Notes

Acknowledgements

Authors acknowledge the fruitful suggestions of Prof. F. Torres on a preliminary version of the manuscript. They are partially supported by the Ministerio de Ciencia y Tecnología, Plan Nacional I+D+I, in the frame of projects MTM2009-07849, MTM2010-20907, MTM2012-31821, and by the Consejería de Educación y Ciencia de la Junta de Andalucía under grants TIC-0130 and P08-FQM-03770.

References

  1. 1.
    Andronov, A.A., Vitt, A.A., Khaikin, S.E.: Theory of Oscillators. Pergamon Press, Oxford (1966)zbMATHGoogle Scholar
  2. 2.
    Bernardin, L., Chin, P., DeMarco, P., Geddes, K.O., Hare, D.E.G.: Maple 16 Maple Programming Guide. Maplesoft, Waterloo (2012)Google Scholar
  3. 3.
    Carmona, V., Fernández-García, S., Freire, E., Torres, F.: Melnikov theory for a class of planar hybrid systems. Physica D: Nonlinear Phenom. 248, 44–54 (2013). ISSN: 0167-2789. doi:10.1016/j.physd.2013.01.002Google Scholar
  4. 4.
    Chow, S.N., Hale, J.K.: Methods of Bifurcation Theory. Grundlehren der Mathematischen Wissenschaften. Springer, New York (1982)CrossRefzbMATHGoogle Scholar
  5. 5.
    Di Bernardo, M., Budd, C., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications. Volume 163 of Applied Mathematical Sciences. Springer, New York/London (2007)Google Scholar
  6. 6.
    Freire, E., Ponce, E., Ros, J.: Limit cycle bifurcation from center in symmetric piecewise-linear systems. Int. J. Bifurc. Chaos 9, 895–907 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Freire, E., Ponce, E., Torres, F.: Canonical discontinuous planar piecewise linear systems. SIAM J. Appl. Dyn. Syst. 11, 181–211 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Guardia, M., Seara, T.M., Teixeira, M.A.: Generic bifurcations of low codimension of planar Filippov systems. J. Differ. Equ. 250, 1967–2023 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kriegsmann, G.A.: The rapid bifurcation of the Wien bridge oscillator. IEEE Trans. Circuits Syst. 34, 1093–1096 (1987)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kuznetsov, Y.A., Rinaldi, S., Gragnani, A.: One-parameter bifurcations in planar filippov systems. Int. J. Bifurc. Chaos 13(8), 2157–2188 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Pagano, D., Ponce, E., Torres, F.: On double boundary equilibrium bifurcations in piecewise smooth planar systems. Qual. Theory Dyn. Syst. 10, 277–301 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Wolfram Research, Inc.: Mathematica Edition: Version 8.0. Wolfram Research, Inc (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Departamento Matemática Aplicada IIE.T.S. IngenieríaSevillaSpain

Personalised recommendations