Advertisement

Finding Periodic Orbits in the Hindmarsh-Rose Neuron Model

  • M. Angeles MartínezEmail author
  • Roberto Barrio
  • Sergio Serrano
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 54)

Abstract

In this work we apply a modified search method based on the stability transformation method, combined with the Newton method, to the classical neuronal model proposed by Hindmarsh and Rose in 1984. We have selected two values of parameter b corresponding to chaotic-bursting behavior (b = 2.69 and b = 3.05). For these values we have studied the changes of the chaotic attractors by obtaining the complete set of unstable periodic orbits up to multiplicity four. For b = 2.69 we have found 1, 1, 2 and 3 POs of multiplicity one to four, respectively, and for b = 3.05 we have found 1, 1, 0, 1 POs of multiplicity one to four, and thus giving a different chaotic attractor.

Keywords

Periodic Orbit Initial Point Newton Method Chaotic Attractor Stable Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is supported by Spanish Research project AYA2008-05572 (to M.A.M.) and by the Spanish Research project MTM2012-31883 (to R.B. and S.S.). We acknowledge Prof. Andrey Shilnikov for valuable comments and fruitful discussions about neuron models.

References

  1. 1.
    Abad, A., Barrio, R., Dena, A.: Computing periodic orbits with arbitrary precision. Phys. Rev. E 84, 6 (2011)CrossRefGoogle Scholar
  2. 2.
    Abad, A., Barrio, R., Blesa, F., Rodríguez, M.: Algorithm 924: TIDES, a Taylor series integrator for differential equations. ACM Trans. Math. Softw. 39, 5:1–5:28 (2012). http://gme.unizar.es/software/tides Google Scholar
  3. 3.
    Abad, A., Barrio, R., Martínez, M.A., Serrano, S.: Finding Periodic Orbits in Time Continuous Dynamical Systems (in preparation)Google Scholar
  4. 4.
    Barrio, R., Shilnikov, A.: Parameter-sweeping techniques for temporal dynamics of neuronal systems: case study of Hindmarsh-Rose model. J. Math. Neurosci. 1, 6 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Davidchack, R.L., Lai, Y.C.: Efficient algorithm for detecting unstable periodic orbits in chaotic systems. Phys. Rev. E 60, 6172 (1999)CrossRefGoogle Scholar
  6. 6.
    Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using three coupled first-order differential equations. Proc. R. Soc. Lond. B221, 87–102 (1984)CrossRefGoogle Scholar
  7. 7.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)Google Scholar
  8. 8.
    Pingel, D., Schemelcher, P., Diakonos, F.K.: Detecting unstable periodic orbits in chaotic continuous-time dynamical systems. Phys. Rev. E 64, 026214 (2001)CrossRefGoogle Scholar
  9. 9.
    Schemelcher, P., Diakonos, F.K.: Detecting unstable periodic orbits of chaotic dynamical systems. Phys. Rev. Lett. 78, 4733 (1997)CrossRefGoogle Scholar
  10. 10.
    Uhlhaas, P.J., Singer, W.: Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52, 155–168 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Angeles Martínez
    • 1
    Email author
  • Roberto Barrio
    • 1
  • Sergio Serrano
    • 1
  1. 1.Departamento de Matemática Aplicada and IUMAUniversidad de ZaragozaZaragozaSpain

Personalised recommendations