Nano-encapsulation of Oligonucleotides for Therapeutic Use

  • Eveline Edith SalcherEmail author
  • Ernst Wagner
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 29)


Oligonucleotides got more and more into focus for therapeutic purposes. Administration of such molecules is a challenge, as surviving the bloodstream passage and passing the barrier cell membrane are almost insuperable tasks. Although successful clinical studies have been conducted with naked oligonucleotides, such as antisense agents or siRNA, poor cellular uptake and low cellular persistence reveal the need for adequate carriers.

Delivery of the undamaged oligonucleotide to its site of action has been explored with manifold systems. However, these systems all have one aim: protection of the cargo during the bloodstream passage, facilitation of cellular uptake, and, finally, payload release into the cytosol. Size plays also an important role for the physiological pathway, as particles, if their size is suboptimal, may either clog blood vessels, be removed by the reticuloendothelial system, or undergo rapid renal clearance.

Therefore, research in this field takes advantage of natural nucleic acid encapsulation systems (viruses) or aims at mimicking virus-like features with nonviral carriers. This review focuses on the principles of oligonucleotide encapsulation or packaging with different classes of carrier molecules towards therapeutic use.


Solid Lipid Nanoparticles Cationic Lipid siRNA Delivery Endosomal Escape Efficient Gene Silence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akhtar S, Benter I (2007) Toxicogenomics of non-viral drug delivery systems for RNAi: potential impact on siRNA-mediated gene silencing activity and specificity. Adv Drug Deliv Rev 59(2–3):164–182. doi: 10.1016/j.addr.2007.03.010 PubMedCrossRefGoogle Scholar
  2. Akhtar S, Hughes MD, Khan A, Bibby M, Hussain M, Nawaz Q, Double J, Sayyed P (2000) The delivery of antisense therapeutics. Adv Drug Deliv Rev 44(1):3–21PubMedCrossRefGoogle Scholar
  3. Akinc A, Thomas M, Klibanov AM, Langer R (2005) Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 7(5):657–663PubMedCrossRefGoogle Scholar
  4. Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N, Bacallado SA, Nguyen DN, Fuller J, Alvarez R, Borodovsky A, Borland T, Constien R, de Fougerolles A, Dorkin JR, Narayanannair Jayaprakash K, Jayaraman M, John M, Koteliansky V, Manoharan M, Nechev L, Qin J, Racie T, Raitcheva D, Rajeev KG, Sah DW, Soutschek J, Toudjarska I, Vornlocher HP, Zimmermann TS, Langer R, Anderson DG (2008) A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 26(5):561–569. doi: 10.1038/nbt1402 PubMedCrossRefGoogle Scholar
  5. Alshamsan A, Hamdy S, Samuel J, El-Kadi AO, Lavasanifar A, Uludag H (2010) The induction of tumor apoptosis in B16 melanoma following STAT3 siRNA delivery with a lipid-substituted polyethylenimine. Biomaterials 31(6):1420–1428. doi: 10.1016/j.biomaterials.2009.11.003 PubMedCrossRefGoogle Scholar
  6. Andaloussi SE, Lehto T, Mager I, Rosenthal-Aizman K, Oprea II, Simonson OE, Sork H, Ezzat K, Copolovici DM, Kurrikoff K, Viola JR, Zaghloul EM, Sillard R, Johansson HJ, Said Hassane F, Guterstam P, Suhorutsenko J, Moreno PM, Oskolkov N, Halldin J, Tedebark U, Metspalu A, Lebleu B, Lehtio J, Smith CI, Langel U (2011) Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Res 39(9):3972–3987. doi: 10.1093/nar/gkq1299 PubMedCrossRefGoogle Scholar
  7. Anderson J, Li MJ, Palmer B, Remling L, Li S, Yam P, Yee JK, Rossi J, Zaia J, Akkina R (2007) Safety and efficacy of a lentiviral vector containing three anti-HIV genes – CCR5 ribozyme, tat-rev siRNA, and TAR decoy – in SCID-hu mouse-derived T cells. Mol Ther 15(6):1182–1188. doi: 10.1038/, 6300157 [pii]PubMedGoogle Scholar
  8. Azad RF, Driver VB, Tanaka K, Crooke RM, Anderson KP (1993) Antiviral activity of a phosphorothioate oligonucleotide complementary to RNA of the human cytomegalovirus major immediate-early region. Antimicrob Agents Chemother 37(9):1945–1954PubMedCrossRefGoogle Scholar
  9. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297PubMedCrossRefGoogle Scholar
  10. Beyerle A, Braun A, Merkel O, Koch F, Kissel T, Stoeger T (2011) Comparative in vivo study of poly(ethylene imine)/siRNA complexes for pulmonary delivery in mice. J Control Release 151(1):51–56. doi: 10.1016/j.jconrel.2010.12.017 PubMedCrossRefGoogle Scholar
  11. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92(16):7297–7301PubMedCrossRefGoogle Scholar
  12. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296(5567):550–553. doi: 10.1126/science.10689991068999 [pii] PubMedCrossRefGoogle Scholar
  13. Burnett JC, Rossi JJ (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19(1):60–71. doi: 10.1016/j.chembiol.2011.12.008 PubMedCrossRefGoogle Scholar
  14. Chien PY, Wang J, Carbonaro D, Lei S, Miller B, Sheikh S, Ali SM, Ahmad MU, Ahmad I (2005) Novel cationic cardiolipin analogue-based liposome for efficient DNA and small interfering RNA delivery in vitro and in vivo. Cancer Gene Ther 12(3):321–328. doi: 10.1038/sj.cgt.7700793 PubMedCrossRefGoogle Scholar
  15. Choi SH, Jin SE, Lee MK, Lim SJ, Park JS, Kim BG, Ahn WS, Kim CK (2008) Novel cationic solid lipid nanoparticles enhanced p53 gene transfer to lung cancer cells. Eur J Pharm Biopharm 68(3):545–554. doi: 10.1016/j.ejpb.2007.07.011 PubMedCrossRefGoogle Scholar
  16. Choi YS, Lee JY, Suh JS, Kwon YM, Lee SJ, Chung JK, Lee DS, Yang VC, Chung CP, Park YJ (2010) The systemic delivery of siRNAs by a cell penetrating peptide, low molecular weight protamine. Biomaterials 31(6):1429–1443. doi: 10.1016/j.biomaterials.2009.11.001, S0142-9612(09)01198-3 [pii]PubMedCrossRefGoogle Scholar
  17. Couto LB, High KA (2010) Viral vector-mediated RNA interference. Curr Opin Pharmacol 10(5):534–542. doi: 10.1016/j.coph.2010.06.007 PubMedCrossRefGoogle Scholar
  18. Crooke ST (1998) Vitravene – another piece in the mosaic. Antisense Nucleic Acid Drug Dev 8(4):vii–viiiPubMedCrossRefGoogle Scholar
  19. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291):1067–1070. doi: 10.1038/nature08956 PubMedCrossRefGoogle Scholar
  20. del Pozo-Rodriguez A, Delgado D, Solinis MA, Gascon AR, Pedraz JL (2007) Solid lipid nanoparticles: formulation factors affecting cell transfection capacity. Int J Pharm 339(1–2):261–268. doi: 10.1016/j.ijpharm.2007.03.015 PubMedCrossRefGoogle Scholar
  21. Devroe E, Silver PA (2004) Therapeutic potential of retroviral RNAi vectors. Expert Opin Biol Ther 4(3):319–327. doi: 10.1517/14712598.4.3.319 PubMedCrossRefGoogle Scholar
  22. DiGiusto DL, Krishnan A, Li L, Li H, Li S, Rao A, Mi S, Yam P, Stinson S, Kalos M, Alvarnas J, Lacey SF, Yee JK, Li M, Couture L, Hsu D, Forman SJ, Rossi JJ, Zaia JA (2010) RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med 2(36):36ra43. doi: 10.1126/scitranslmed.3000931 PubMedCrossRefGoogle Scholar
  23. Dohmen C, Edinger D, Frohlich T, Schreiner L, Lachelt U, Troiber C, Radler J, Hadwiger P, Vornlocher HP, Wagner E (2012) Nanosized multifunctional polyplexes for receptor-mediated SiRNA delivery. ACS Nano 6(6):5198–5208PubMedCrossRefGoogle Scholar
  24. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498PubMedCrossRefGoogle Scholar
  25. Epiphanio S, Mikolajczak SA, Goncalves LA, Pamplona A, Portugal S, Albuquerque S, Goldberg M, Rebelo S, Anderson DG, Akinc A, Vornlocher HP, Kappe SH, Soares MP, Mota MM (2008) Heme oxygenase-1 is an anti-inflammatory host factor that promotes murine plasmodium liver infection. Cell Host Microbe 3(5):331–338. doi: 10.1016/j.chom.2008.04.003 PubMedCrossRefGoogle Scholar
  26. Ezzat K, El Andaloussi S, Zaghloul EM, Lehto T, Lindberg S, Moreno PM, Viola JR, Magdy T, Abdo R, Guterstam P, Sillard R, Hammond SM, Wood MJ, Arzumanov AA, Gait MJ, Smith CI, Hallbrink M, Langel U (2011) PepFect 14, a novel cell-penetrating peptide for oligonucleotide delivery in solution and as solid formulation. Nucleic Acids Res 39(12):5284–5298. doi: 10.1093/nar/gkr072, gkr072 [pii]PubMedCrossRefGoogle Scholar
  27. Felgner PL, Ringold GM (1989) Cationic liposome-mediated transfection. Nature 337(6205):387–388. doi: 10.1038/337387a0 PubMedCrossRefGoogle Scholar
  28. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811PubMedCrossRefGoogle Scholar
  29. Fish RJ, Kruithof EK (2004) Short-term cytotoxic effects and long-term instability of RNAi delivered using lentiviral vectors. BMC Mol Biol 5:9. doi: 10.1186/1471-2199-5-9 PubMedCrossRefGoogle Scholar
  30. Fortune JA, Novobrantseva TI, Klibanov AM (2011) Highly effective gene transfection in vivo by alkylated polyethylenimine. J Drug Deliv 2011:204058. doi: 10.1155/2011/204058 PubMedCrossRefGoogle Scholar
  31. Frank-Kamenetsky M, Grefhorst A, Anderson NN, Racie TS, Bramlage B, Akinc A, Butler D, Charisse K, Dorkin R, Fan Y, Gamba-Vitalo C, Hadwiger P, Jayaraman M, John M, Jayaprakash KN, Maier M, Nechev L, Rajeev KG, Read T, Rohl I, Soutschek J, Tan P, Wong J, Wang G, Zimmermann T, de Fougerolles A, Vornlocher HP, Langer R, Anderson DG, Manoharan M, Koteliansky V, Horton JD, Fitzgerald K (2008) Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci USA 105(33):11915–11920. doi: 10.1073/pnas.0805434105, 0805434105 [pii]PubMedCrossRefGoogle Scholar
  32. Frohlich T, Edinger D, Klager R, Troiber C, Salcher E, Badgujar N, Martin I, Schaffert D, Cengizeroglu A, Hadwiger P, Vornlocher HP, Wagner E (2012) Structure-activity relationships of siRNA carriers based on sequence-defined oligo (ethane amino) amides. J Control Release 160(3):532–541. doi: 10.1016/j.jconrel.2012.03.018 PubMedCrossRefGoogle Scholar
  33. Geisbert TW, Hensley LE, Kagan E, Yu EZ, Geisbert JB, Daddario-DiCaprio K, Fritz EA, Jahrling PB, McClintock K, Phelps JR, Lee AC, Judge A, Jeffs LB, MacLachlan I (2006) Postexposure protection of guinea pigs against a lethal ebola virus challenge is conferred by RNA interference. J Infect Dis 193(12):1650–1657. doi: 10.1086/504267 PubMedCrossRefGoogle Scholar
  34. Geisbert TW, Lee AC, Robbins M, Geisbert JB, Honko AN, Sood V, Johnson JC, de Jong S, Tavakoli I, Judge A, Hensley LE, Maclachlan I (2010) Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet 375(9729):1896–1905. doi: 10.1016/S0140-6736(10)60357-1 PubMedCrossRefGoogle Scholar
  35. Gregory RI, Shiekhattar R (2005) MicroRNA biogenesis and cancer. Cancer Res 65(9):3509–3512. doi: 10.1158/0008-5472.CAN-05-0298 PubMedCrossRefGoogle Scholar
  36. Grillone LR, Lanz R (2001) Fomivirsen. Drugs Today (Barc) 37(4):245–255Google Scholar
  37. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441(7092):537–541. doi: 10.1038/nature04791 PubMedCrossRefGoogle Scholar
  38. Hannon GJ (2002) RNA interference. Nature 418(6894):244–251. doi: 10.1038/418244a PubMedCrossRefGoogle Scholar
  39. Hartmann L, Krause E, Antonietti M, Borner HG (2006) Solid-phase supported polymer synthesis of sequence-defined, multifunctional poly(amidoamines). Biomacromolecules 7(4):1239–1244PubMedCrossRefGoogle Scholar
  40. Hartmann L, Hafele S, Peschka-Suss R, Antonietti M, Borner HG (2008) Tailor-made poly(amidoamine)s for controlled complexation and condensation of DNA. Chemistry 14(7):2025–2033PubMedCrossRefGoogle Scholar
  41. Hatakeyama H, Ito E, Akita H, Oishi M, Nagasaki Y, Futaki S, Harashima H (2009) A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo. J Control Release 139(2):127–132. doi: 10.1016/j.jconrel.2009.06.008, S0168-3659(09)00418-0 [pii]PubMedCrossRefGoogle Scholar
  42. Hollins AJ, Omidi Y, Benter IF, Akhtar S (2007) Toxicogenomics of drug delivery systems: exploiting delivery system-induced changes in target gene expression to enhance siRNA activity. J Drug Target 15(1):83–88. doi: 10.1080/10611860601151860 PubMedCrossRefGoogle Scholar
  43. Howard KA, Paludan SR, Behlke MA, Besenbacher F, Deleuran B, Kjems J (2009) Chitosan/siRNA nanoparticle-mediated TNF-alpha knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model. Mol Ther 17(1):162–168. doi: 10.1038/mt.2008.220 PubMedCrossRefGoogle Scholar
  44. Hughes MD, Hussain M, Nawaz Q, Sayyed P, Akhtar S (2001) The cellular delivery of antisense oligonucleotides and ribozymes. Drug Discov Today 6(6):303–315PubMedCrossRefGoogle Scholar
  45. Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ (2005) Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res 65(19):8984–8992. doi: 10.1158/0008-5472.CAN-05-0565 PubMedCrossRefGoogle Scholar
  46. Jakobsen MR, Haasnoot J, Wengel J, Berkhout B, Kjems J (2007) Efficient inhibition of HIV-1 expression by LNA modified antisense oligonucleotides and DNAzymes targeted to functionally selected binding sites. Retrovirology 4:29. doi: 10.1186/1742-4690-4-29 PubMedCrossRefGoogle Scholar
  47. Kenworthy R, Lambert D, Yang F, Wang N, Chen Z, Zhu H, Zhu F, Liu C, Li K, Tang H (2009) Short-hairpin RNAs delivered by lentiviral vector transduction trigger RIG-I-mediated IFN activation. Nucleic Acids Res 37(19):6587–6599. doi: 10.1093/nar/gkp714, gkp714 [pii]PubMedCrossRefGoogle Scholar
  48. Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137(6):1005–1017. doi: 10.1016/j.cell.2009.04.021 PubMedCrossRefGoogle Scholar
  49. Kumar P, Lee SK, Shankar P, Manjunath N (2006) A single siRNA suppresses fatal encephalitis induced by two different flaviviruses. PLoS Med 3(4):e96. doi: 10.1371/journal.pmed.0030096 PubMedCrossRefGoogle Scholar
  50. Kwok A, Hart SL (2011) Comparative structural and functional studies of nanoparticle formulations for DNA and siRNA delivery. Nanomedicine 7(2):210–219. doi: 10.1016/j.nano.2010.07.005, S1549-9634(10)00239-X [pii]PubMedCrossRefGoogle Scholar
  51. Kwon EJ, Bergen JM, Pun SH (2008) Application of an HIV gp41-derived peptide for enhanced intracellular trafficking of synthetic gene and siRNA delivery vehicles. Bioconjug Chem 19(4):920–927PubMedCrossRefGoogle Scholar
  52. Landen CN Jr, Chavez-Reyes A, Bucana C, Schmandt R, Deavers MT, Lopez-Berestein G, Sood AK (2005) Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res 65(15):6910–6918. doi: 10.1158/0008-5472.CAN-05-0530 PubMedCrossRefGoogle Scholar
  53. Leng Q, Mixson AJ (2005) Small interfering RNA targeting Raf-1 inhibits tumor growth in vitro and in vivo. Cancer Gene Ther 12(8):682–690PubMedCrossRefGoogle Scholar
  54. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838. doi: 10.1038/nature03702 PubMedCrossRefGoogle Scholar
  55. Lv H, Zhang S, Wang B, Cui S, Yan J (2006) Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 114(1):100–109. doi: 10.1016/j.jconrel.2006.04.014 PubMedCrossRefGoogle Scholar
  56. Ma Z, Li J, He F, Wilson A, Pitt B, Li S (2005) Cationic lipids enhance siRNA-mediated interferon response in mice. Biochem Biophys Res Commun 330(3):755–759. doi: 10.1016/j.bbrc.2005.03.041 PubMedCrossRefGoogle Scholar
  57. Martin I, Dohmen C, Mas-Moruno C, Troiber C, Kos P, Schaffert D, Lachelt U, Teixido M, Gunther M, Kessler H, Giralt E, Wagner E (2012) Solid-phase-assisted synthesis of targeting peptide-PEG-oligo(ethane amino)amides for receptor-mediated gene delivery. Org Biomol Chem 10(16):3258–3268. doi: 10.1039/c2ob06907e PubMedCrossRefGoogle Scholar
  58. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431(7006):343–349. doi: 10.1038/nature02873 PubMedCrossRefGoogle Scholar
  59. Meyer M, Philipp A, Oskuee R, Schmidt C, Wagner E (2008) Breathing life into polycations: functionalization with pH-responsive endosomolytic peptides and polyethylene glycol enables siRNA delivery. J Am Chem Soc 130(11):3272–3273PubMedCrossRefGoogle Scholar
  60. Meyer M, Dohmen C, Philipp A, Kiener D, Maiwald G, Scheu C, Ogris M, Wagner E (2009) Synthesis and biological evaluation of a bioresponsive and endosomolytic siRNA-polymer conjugate. Mol Pharm 6(3):752–762. doi: 10.1021/mp9000124 PubMedCrossRefGoogle Scholar
  61. Minakuchi Y, Takeshita F, Kosaka N, Sasaki H, Yamamoto Y, Kouno M, Honma K, Nagahara S, Hanai K, Sano A, Kato T, Terada M, Ochiya T (2004) Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res 32(13):e109. doi: 10.1093/nar/gnh093 PubMedCrossRefGoogle Scholar
  62. Miyata K, Nishiyama N, Kataoka K (2012) Rational design of smart supramolecular assemblies for gene delivery: chemical challenges in the creation of artificial viruses. Chem Soc Rev 41(7):2562–2574PubMedCrossRefGoogle Scholar
  63. Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A (2005) A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther 11(6):990–995PubMedCrossRefGoogle Scholar
  64. Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, Hartsough K, Machemer L, Radka S, Jadhav V, Vaish N, Zinnen S, Vargeese C, Bowman K, Shaffer CS, Jeffs LB, Judge A, MacLachlan I, Polisky B (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23(8):1002–1007. doi: 10.1038/nbt1122 PubMedCrossRefGoogle Scholar
  65. Omidi Y, Hollins AJ, Benboubetra M, Drayton R, Benter IF, Akhtar S (2003) Toxicogenomics of non-viral vectors for gene therapy: a microarray study of lipofectin- and oligofectamine-induced gene expression changes in human epithelial cells. J Drug Target 11(6):311–323. doi: 10.1080/10611860310001636908 PubMedCrossRefGoogle Scholar
  66. Omidi Y, Hollins AJ, Drayton RM, Akhtar S (2005) Polypropylenimine dendrimer-induced gene expression changes: the effect of complexation with DNA, dendrimer generation and cell type. J Drug Target 13(7):431–443. doi: 10.1080/10611860500418881 PubMedCrossRefGoogle Scholar
  67. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16(8):948–958. doi: 10.1101/gad.981002 PubMedCrossRefGoogle Scholar
  68. Pal A, Ahmad A, Khan S, Sakabe I, Zhang C, Kasid UN, Ahmad I (2005) Systemic delivery of RafsiRNA using cationic cardiolipin liposomes silences Raf-1 expression and inhibits tumor growth in xenograft model of human prostate cancer. Int J Oncol 26(4):1087–1091PubMedGoogle Scholar
  69. Pan X, Chen L, Liu S, Yang X, Gao JX, Lee RJ (2009) Antitumor activity of G3139 lipid nanoparticles (LNPs). Mol Pharm 6(1):211–220. doi: 10.1021/mp800146j PubMedCrossRefGoogle Scholar
  70. Peer D, Park EJ, Morishita Y, Carman CV, Shimaoka M (2008) Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 319(5863):627–630PubMedCrossRefGoogle Scholar
  71. Pille JY, Li H, Blot E, Bertrand JR, Pritchard LL, Opolon P, Maksimenko A, Lu H, Vannier JP, Soria J, Malvy C, Soria C (2006) Intravenous delivery of anti-RhoA small interfering RNA loaded in nanoparticles of chitosan in mice: safety and efficacy in xenografted aggressive breast cancer. Hum Gene Ther 17(10):1019–1026. doi: 10.1089/hum.2006.17.1019 PubMedCrossRefGoogle Scholar
  72. Ravina M, Paolicelli P, Seijo B, Sanchez A (2010) Knocking down gene expression with dendritic vectors. Mini Rev Med Chem 10(1):73–86PubMedCrossRefGoogle Scholar
  73. Salcher EE, Kos P, Frohlich T, Badgujar N, Scheible M, Wagner E (2012) Sequence-defined four-arm oligo(ethanamino)amides for pDNA and siRNA delivery: impact of building blocks on efficacy. J Control Release 164(3):380–386PubMedCrossRefGoogle Scholar
  74. Saw PE, Ko YT, Jon S (2010) Efficient liposomal nanocarrier-mediated oligodeoxynucleotide delivery involving dual use of a cell-penetrating peptide as a packaging and intracellular delivery agent. Macromol Rapid commun 31(13):1155–1162. doi: 10.1002/marc.200900861 PubMedCrossRefGoogle Scholar
  75. Schaffert D, Badgujar N, Wagner E (2011a) Novel Fmoc-polyamino acids for solid-phase synthesis of defined polyamidoamines. Org Lett 13(7):1586–1589. doi: 10.1021/ol200381z PubMedCrossRefGoogle Scholar
  76. Schaffert D, Kiss M, Rodl W, Shir A, Levitzki A, Ogris M, Wagner E (2011b) Poly(I:C)-mediated tumor growth suppression in EGF-receptor overexpressing tumors using EGF-polyethylene glycol-linear polyethylenimine as carrier. Pharm Res 28(4):731–741. doi: 10.1007/s11095-010-0225-4 PubMedCrossRefGoogle Scholar
  77. Schaffert D, Troiber C, Salcher EE, Frohlich T, Martin I, Badgujar N, Dohmen C, Edinger D, Klager R, Maiwald G, Farkasova K, Seeber S, Jahn-Hofmann K, Hadwiger P, Wagner E (2011c) Solid-phase synthesis of sequence-defined T-, i-, and U-shape polymers for pDNA and siRNA delivery. Angew Chem Int Ed Engl 50(38):8986–8989. doi: 10.1002/anie.201102165 PubMedCrossRefGoogle Scholar
  78. Scholz C, Wagner E (2012) Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. J Control Release 161(2):554–565. doi: 10.1016/j.jconrel.2011.11.014, S0168-3659(11)01044-3 [pii]PubMedCrossRefGoogle Scholar
  79. Semple SC, Akinc A, Chen J, Sandhu AP, Mui BL, Cho CK, Sah DW, Stebbing D, Crosley EJ, Yaworski E, Hafez IM, Dorkin JR, Qin J, Lam K, Rajeev KG, Wong KF, Jeffs LB, Nechev L, Eisenhardt ML, Jayaraman M, Kazem M, Maier MA, Srinivasulu M, Weinstein MJ, Chen Q, Alvarez R, Barros SA, De S, Klimuk SK, Borland T, Kosovrasti V, Cantley WL, Tam YK, Manoharan M, Ciufolini MA, Tracy MA, de Fougerolles A, MacLachlan I, Cullis PR, Madden TD, Hope MJ (2010) Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 28(2):172–176. doi: 10.1038/nbt.1602 PubMedCrossRefGoogle Scholar
  80. Shi SJ, Zhong ZR, Liu J, Zhang ZR, Sun X, Gong T (2012) Solid lipid nanoparticles loaded with anti-microRNA oligonucleotides (AMOs) for suppression of microRNA-21 functions in human lung cancer cells. Pharm Res 29(1):97–109. doi: 10.1007/s11095-011-0514-6 PubMedCrossRefGoogle Scholar
  81. Sliva K, Schnierle BS (2010) Selective gene silencing by viral delivery of short hairpin RNA. Virol J 7:248. doi: 10.1186/1743-422X-7-248 PubMedCrossRefGoogle Scholar
  82. Sonoke S, Ueda T, Fujiwara K, Sato Y, Takagaki K, Hirabayashi K, Ohgi T, Yano J (2008) Tumor regression in mice by delivery of Bcl-2 small interfering RNA with pegylated cationic liposomes. Cancer Res 68(21):8843–8851. doi: 10.1158/0008-5472.CAN-08-0127, 68/21/8843 [pii]PubMedCrossRefGoogle Scholar
  83. Sun A, Tang J, Terranova PF, Zhang X, Thrasher JB, Li B (2010) Adeno-associated virus-delivered short hairpin-structured RNA for androgen receptor gene silencing induces tumor eradication of prostate cancer xenografts in nude mice: a preclinical study. Int J Cancer 126(3):764–774. doi: 10.1002/ijc.24778 PubMedCrossRefGoogle Scholar
  84. Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A, Moghimi SM (2005) Low and high molecular weight poly(L-lysine)s/poly(L-lysine)-DNA complexes initiate mitochondrial-mediated apoptosis differently. FEBS Lett 579(27):6191–6198. doi: 10.1016/j.febslet.2005.09.092, S0014-5793(05)01237-8 [pii]PubMedCrossRefGoogle Scholar
  85. Takei Y, Kadomatsu K, Yuzawa Y, Matsuo S, Muramatsu T (2004) A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res 64(10):3365–3370. doi: 10.1158/0008-5472.CAN-03-2682 PubMedCrossRefGoogle Scholar
  86. Thomas M, Lu JJ, Ge Q, Zhang C, Chen J, Klibanov AM (2005) Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc Natl Acad Sci USA 102(16):5679–5684. doi: 10.1073/pnas.0502067102, 0502067102 [pii]PubMedCrossRefGoogle Scholar
  87. Tomanin R, Scarpa M (2004) Why do we need new gene therapy viral vectors? Characteristics, limitations and future perspectives of viral vector transduction. Curr Gene Ther 4(4):357–372PubMedCrossRefGoogle Scholar
  88. Tran MA, Gowda R, Sharma A, Park EJ, Adair J, Kester M, Smith NB, Robertson GP (2008) Targeting V600EB-Raf and Akt3 using nanoliposomal-small interfering RNA inhibits cutaneous melanocytic lesion development. Cancer Res 68(18):7638–7649. doi: 10.1158/0008-5472.CAN-07-6614 PubMedCrossRefGoogle Scholar
  89. Tsai LR, Chen MH, Chien CT, Chen MK, Lin FS, Lin KM, Hwu YK, Yang CS, Lin SY (2011) A single-monomer derived linear-like PEI-co-PEG for siRNA delivery and silencing. Biomaterials 32(14):3647–3653. doi: 10.1016/j.biomaterials.2011.01.059 PubMedCrossRefGoogle Scholar
  90. Wagner E (2012) Polymers for siRNA delivery: inspired by viruses to be targeted, dynamic, and precise. Acc Chem Res 45(7):1005–1013. doi: 10.1021/ar2002232 PubMedCrossRefGoogle Scholar
  91. Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT, Paulson HL, Yang L, Kotin RM, Davidson BL (2004) RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 10(8):816–820. doi: 10.1038/nm1076 PubMedCrossRefGoogle Scholar
  92. Yokota T, Iijima S, Kubodera T, Ishii K, Katakai Y, Ageyama N, Chen Y, Lee YJ, Unno T, Nishina K, Iwasaki Y, Maki N, Mizusawa H, Akari H (2007) Efficient regulation of viral replication by siRNA in a non-human primate surrogate model for hepatitis C. Biochem Biophys Res Commun 361(2):294–300. doi: 10.1016/j.bbrc.2007.06.182 PubMedCrossRefGoogle Scholar
  93. Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 75(1):280–284PubMedCrossRefGoogle Scholar
  94. Zamore PD, Haley B (2005) Ribo-gnome: the big world of small RNAs. Science 309(5740):1519–1524. doi: 10.1126/science.1111444 PubMedCrossRefGoogle Scholar
  95. Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, Harborth J, Heyes JA, Jeffs LB, John M, Judge AD, Lam K, McClintock K, Nechev LV, Palmer LR, Racie T, Rohl I, Seiffert S, Shanmugam S, Sood V, Soutschek J, Toudjarska I, Wheat AJ, Yaworski E, Zedalis W, Koteliansky V, Manoharan M, Vornlocher HP, MacLachlan I (2006) RNAi-mediated gene silencing in non-human primates. Nature 441(7089):111–114. doi: 10.1038/nature04688 PubMedCrossRefGoogle Scholar
  96. Zintchenko A, Philipp A, Dehshahri A, Wagner E (2008) Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjug Chem 19(7):1448–1455. doi: 10.1021/bc800065f PubMedCrossRefGoogle Scholar
  97. zur Muhlen A, Schwarz C, Mehnert W (1998) Solid lipid nanoparticles (SLN) for controlled drug delivery – drug release and release mechanism. Eur J Pharm Biopharm 45(2):149–155PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Pharmaceutical BiotechnologyLudwig Maximilians University MunichMunichGermany
  2. 2.Center for System-Based Drug ResearchLudwig Maximilians University MunichMunichGermany
  3. 3.Center for Nanoscience (CeNS)Ludwig Maximilians University MunichMunichGermany
  4. 4.Nanosystems Initiative Munich (NIM)MunichGermany

Personalised recommendations