Bounded Least General Generalization

  • Ondřej Kuželka
  • Andrea Szabóová
  • Filip Železný
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7842)

Abstract

We study a generalization of Plotkin’s least general generalization. We introduce a novel concept called bounded least general generalization w.r.t. a set of clauses and show an instance of it for which polynomial-time reduction procedures exist. We demonstrate the practical utility of our approach in experiments on several relational learning datasets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Plotkin, G.: A note on inductive generalization. Edinburgh University Press (1970)Google Scholar
  2. 2.
    Nienhuys-Cheng, S.-H., de Wolf, R. (eds.): Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Muggleton, S., Feng, C.: Efficient induction of logic programs. In: ALT, pp. 368–381 (1990)Google Scholar
  4. 4.
    Horváth, T., Paass, G., Reichartz, F., Wrobel, S.: A logic-based approach to relation extraction from texts. In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 34–48. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers (2003)Google Scholar
  6. 6.
    Maloberti, J., Sebag, M.: Fast theta-subsumption with constraint satisfaction algorithms. Machine Learning 55(2), 137–174 (2004)MATHCrossRefGoogle Scholar
  7. 7.
    Atserias, A., Bulatov, A., Dalmau, V.: On the power of k-consistency. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 279–290. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier (2006)Google Scholar
  9. 9.
    Srinivasan, A., Muggleton, S.H.: Mutagenesis: ILP experiments in a non-determinate biological domain. In: ILP, pp. 217–232 (1994)Google Scholar
  10. 10.
    Helma, C., King, R.D., Kramer, S., Srinivasan, A.: The predictive toxicology challenge 2000-2001. Bioinformatics 17(1), 107–108 (2001)CrossRefGoogle Scholar
  11. 11.
    Cherkasov, A., Jankovic, B.: Application of ‘inductive’ qsar descriptors for quantification of antibacterial activity of cationic polypeptides. Molecules 9(12), 1034–1052 (2004)CrossRefGoogle Scholar
  12. 12.
    Žáková, M., Železný, F., Garcia-Sedano, J.A., Masia Tissot, C., Lavrač, N., Křemen, P., Molina, J.: Relational data mining applied to virtual engineering of product designs. In: Muggleton, S.H., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI), vol. 4455, pp. 439–453. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Landwehr, N., Kersting, K., De Raedt, L.: Integrating naïve bayes and FOIL. Journal of Machine Learning Research 8, 481–507 (2007)MATHGoogle Scholar
  14. 14.
    Muggleton, S., Santos, J., Tamaddoni-Nezhad, A.: Progolem: A system based on relative minimal generalisation. In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 131–148. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Liquiere, M.: Arc consistency projection: A new generalization relation for graphs. In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS 2007. LNCS (LNAI), vol. 4604, pp. 333–346. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Schietgat, L., Costa, F., Ramon, J., De Raedt, L.: Effective feature construction by maximum common subgraph sampling. Machine Learning 83(2), 137–161 (2011)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ondřej Kuželka
    • 1
  • Andrea Szabóová
    • 1
  • Filip Železný
    • 1
  1. 1.Faculty of Electrical EngineeringCzech Technical University in PraguePragueCzech Republic

Personalised recommendations