Skip to main content

Pairwise Markov Logic

  • Conference paper
  • 584 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 7842)


For many tasks in fields like computer vision, computational biology and information extraction, popular probabilistic inference methods have been devised mainly for propositional models that contain only unary and pairwise clique potentials. In contrast, statistical relational approaches typically do not restrict a model’s representational power and use high-order potentials to capture the rich structure of relational domains. This paper aims to bring both worlds closer together.

We introduce pairwise Markov Logic, a subset of Markov Logic where each formula contains at most two atoms. We show that every non-pairwise Markov Logic Network (MLN) can be transformed or ‘reduced’ to a pairwise MLN. Thus, existing, highly efficient probabilistic inference methods can be employed for pairwise MLNs without the overhead of devising or implementing high-order variants. Experiments on two relational datasets confirm the usefulness of this reduction approach.


  • Domain Size
  • Ground Atom
  • Markov Logic Network
  • Unary Formula
  • Pairwise Approach

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-38812-5_5
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-38812-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Gallagher, A.C., Batra, D., Parikh, D.: Inference for order reduction in Markov random fields. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1857–1864. IEEE Computer Society, Los Alamitos (2011)

    Google Scholar 

  2. Kumar, M., Kolmogorov, V., Torr, P.: An analysis of convex relaxations for MAP estimation of discrete MRFs. Journal of Machine Learning Research 10, 71–106 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Sontag, D., Meltzer, T., Globerson, A., Jaakkola, T., Weiss, Y.: Tightening LP relaxations for MAP using message passing. In: Proceedings of the 24th Annual Conference on Uncertainty in Artificial Intelligence, pp. 503–510. AUAI Press, Corvallis (2008)

    Google Scholar 

  4. Cour, T., Shi, J.: Solving Markov random fields with spectral relaxation. Journal of Machine Learning Research - Proceedings Track 2, 75–82 (2007)

    Google Scholar 

  5. Rother, C., Kolmogorov, V., Lempitsky, V.S., Szummer, M.: Optimizing binary MRFs via extended roof duality. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  6. Kolmogorov, V., Rother, C.: Minimizing nonsubmodular functions with graph cuts - A review. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(7), 1274–1279 (2007)

    CrossRef  Google Scholar 

  7. Domingos, P., Kok, S., Lowd, D., Poon, H., Richardson, M., Singla, P.: Markov Logic. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.) Probabilistic ILP 2007. LNCS (LNAI), vol. 4911, pp. 92–117. Springer, Heidelberg (2008)

    Google Scholar 

  8. Mladenov, M., Ahmadi, B., Kersting, K.: Lifted linear programming. In: 15th International Conference on Artificial Intelligence and Statistics, La Palma, Canary Islands, Spain. Journal of Machine Learning Research: Workshop & Conference Proceedings, vol. 22 (2012)

    Google Scholar 

  9. Karp, R.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fierens, D., Kersting, K., Davis, J., Chen, J., Mladenov, M. (2013). Pairwise Markov Logic. In: Riguzzi, F., Železný, F. (eds) Inductive Logic Programming. ILP 2012. Lecture Notes in Computer Science(), vol 7842. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38811-8

  • Online ISBN: 978-3-642-38812-5

  • eBook Packages: Computer ScienceComputer Science (R0)