Skip to main content

Electronic Structure and Properties of Graphen Nanoribbons: Zigzag and Armchair Edges

  • Conference paper
  • First Online:
Imaging and Manipulating Molecular Orbitals

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

  • 1091 Accesses

Abstract

Scanning tunneling microscopy is a very suitable instrument for the local probing and spectroscopic characterization of individual molecules, in our case narrow graphene nanoribbons. The electronic properties of a graphene nanoribbon can be controlled by its edge structure and width. Bottom-up approaches like on-surface synthesis allow the formation of extended conjugated electronic systems. Moreover, they lead to atomically defined edges which are important as structural defects have been predicted to modify the electronic structure. We have used low temperature scanning tunneling microscopy to investigate the formation, adsorption properties, and electronic structure of single graphene nanoribbons. 10,10′-Dibromo-9,9′-bianthryl molecules were used as molecular building blocks to form graphene nanoribbons after linking of the monomers and subsequent cyclodehydrogenation. In addition to intact ribbons, the influence of various defects on the electronic states is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Geim, A.K.: Graphene: status and prospects. Science 324, 1530 (2009)

    Article  ADS  Google Scholar 

  2. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  3. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  4. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Ri Kim, H., Song, Y.I., Kim, Y.-J., Kim, K.S., Ozyilmaz, B., Ahn, J.-H., Hong, B.H., Iijima, S.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nano. 5, 574 (2010)

    Article  Google Scholar 

  5. Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.-H., Kim, P., Choi, J.-Y., Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706 (2009)

    Article  ADS  Google Scholar 

  6. Ohta, T., Bostwick, A., Seyller, T., Horn, K., Rotenberg, E.: Controlling the electronic structure of bilayer graphene. Science 313, 951 (2006)

    Article  ADS  Google Scholar 

  7. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  8. Han, M.Y., Özyilmaz, B., Zhang, Y., Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  9. Yang, L., Park, C.-H., Son, Y.-W., Cohen, M.L., Louie, S.G.: Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007)

    Article  ADS  Google Scholar 

  10. Brey, L., Fertig, H.A.: Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B 73, 235411 (2006)

    Article  ADS  Google Scholar 

  11. Nakada, K., Fujita, M., Dresselhaus, G., Dresselhaus, M.S.: Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954 (1996)

    Article  ADS  Google Scholar 

  12. Gross, L., Moll, N., Mohn, F., Curioni, A., Meyer, G., Hanke, F., Persson, M.: High-resolution molecular orbital imaging using a p-wave STM tip. Phys. Rev. Lett. 107, 086101 (2011)

    Article  ADS  Google Scholar 

  13. Makoudi, Y., Palmino, F., Duverger, E., Arab, M., Chérioux, F., Ramseyer, C., Therrien, B., Tschan, M.J.L., Süss-Fink, G.: Nondestructive room-temperature adsorption of 2,4,6-tri(2′-thienyl)-1,3,5-triazine on a Si-B interface: high-resolution STM imaging and molecular modeling. Phys. Rev. Lett. 100, 076405 (2008)

    Article  ADS  Google Scholar 

  14. Repp, J., Meyer, G., Stojkovic, S.M., Gourdon, A., Joachim, C.: Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005)

    Article  ADS  Google Scholar 

  15. Chavy, C., Joachim, C., Altibelli, A.: Interpretation of STM images: C60 on the gold (110) surface. Chem. Phys. Lett. 214, 569 (1993)

    Article  ADS  Google Scholar 

  16. Neaton, J.B., Hybertsen, M.S., Louie, S.G.: Renormalization of molecular electronic levels at metal-molecule interfaces. Phys. Rev. Lett. 97, 216405 (2006)

    Article  ADS  Google Scholar 

  17. Lagoute, J., Kanisawa, K., Fölsch, S.: Manipulation and adsorption-site mapping of single pentacene molecules on Cu(111). Phys. Rev. B 70, 245415 (2004)

    Article  ADS  Google Scholar 

  18. Lagoute, J., Kanisawa, K., Fösch, S.: Manipulation and adsorption-site mapping of single pentacene molecules on Cu(111). Phys. Rev. B 70, 245415 (2004)

    Article  ADS  Google Scholar 

  19. Soe, W.H., Manzano, C., De Sarkar, A., Chandrasekhar, N., Joachim, C.: Direct observation of molecular orbitals of pentacene physisorbed on Au(111) by scanning tunneling microscope. Phys. Rev. Lett. 102, 176102 (2009)

    Article  ADS  Google Scholar 

  20. Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877 (2009)

    Article  ADS  Google Scholar 

  21. Moreno-Moreno, M., Castellanos-Gomez, A., Rubio-Bollinger, G., Gomez-Herrero, J., Agraït, N.: Ultralong natural graphene nanoribbons and their electrical conductivity. Small 5, 924 (2009)

    Article  Google Scholar 

  22. Tapaszto, L., Dobrik, G., Lambin, P., Biro, L.P.: Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nano 3, 397 (2008)

    Article  Google Scholar 

  23. Wang, X., Dai, H.: Etching and narrowing of graphene from the edges. Nat. Chem. 2, 661 (2010)

    Article  Google Scholar 

  24. Grill, L., Dyer, M., Lafferentz, L., Persson, M., Peters, M.V., Hecht, S.: Nano-architectures by covalent assembly of molecular building blocks. Nat. Nano 2, 687 (2007)

    Article  Google Scholar 

  25. Hla, S.-W., Bartels, L., Meyer, G., Rieder, K.-H.: Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering. Phys. Rev. Lett. 85, 2777 (2000)

    Article  ADS  Google Scholar 

  26. Lafferentz, L., Eberhardt, V., Dri, C., Africh, C., Comelli, G., Esch, F., Hecht, S., Grill, L.: Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nat. Chem. 4, 215 (2012)

    Article  Google Scholar 

  27. Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A.P., Saleh, M., Feng, X., Mullen, K., Fasel, R.: Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470 (2010)

    Article  ADS  Google Scholar 

  28. Chen, W., Madhavan, V., Jamneala, T., Crommie, M.F.: Scanning tunneling microscopy observation of an electronic superlattice at the surface of clean gold. Phys. Rev. Lett. 80, 1469 (1998)

    Article  ADS  Google Scholar 

  29. Koch, M., Ample, F., Joachim, C., Grill, L.: Voltage-dependent conductance of a single graphene nanoribbon. Nat. Nano 7, 713 (2012)

    Article  Google Scholar 

  30. Tamm, I.: Über eine mögliche Art der Elektronenbindung. Phys. Z. Sowjetunion 1, 733 (1932)

    Google Scholar 

  31. Linden, S., Zhong, D., Timmer, A., Aghdassi, N., Franke, J.H., Zhang, H., Feng, X., Müllen, K., Fuchs, H., Chi, L., Zacharias, H.: Electronic structure of spatially aligned graphene nanoribbons on Au(788). Phys. Rev. Lett. 108, 216801 (2012)

    Article  ADS  Google Scholar 

  32. Bronner, C., Leyssner, F., Stremlau, S., Utecht, M., Saalfrank, P., Klamroth, T., Tegeder, P.: Electronic structure of a subnanometer wide bottom-up fabricated graphene nanoribbon: End states, band gap, and dispersion. Phys. Rev. B 86, 085444 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from European Projects ARTIST and AtMol and the German Science Foundation DFG (through SFB 658). We also acknowledge the A*STAR Computational Resource Centre (A*CRC) for the computational resources and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonhard Grill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koch, M., Ample, F., Joachim, C., Grill, L. (2013). Electronic Structure and Properties of Graphen Nanoribbons: Zigzag and Armchair Edges. In: Grill, L., Joachim, C. (eds) Imaging and Manipulating Molecular Orbitals. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38809-5_7

Download citation

Publish with us

Policies and ethics