Skip to main content

Guttation: Quantification, Microbiology and Implications for Phytopathology

  • Chapter
  • First Online:
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 75))

Abstract

Guttation is the process of liquid exudation from hydathodes situated on the tip, along the margins and adaxial and abaxial surfaces of leaves. Hydathodes, also known as water stomata or water pores, unlike stomata, are always open representing the path of least resistance to the liquid outflow from them. Guttation fluids contain a variety of living and non-living ingredients. The living materials include algae, fungi, bacteria, viroids and viruses. The non-living organic constituents include toxins, mycotoxins, alkaloids, proteins, enzymes, sugars, amino acids, volatiles, hormones, vitamins, etc., and the inorganic components include Na, K, Ca, Mg, Mn, B, Co, Zn, Se, Ni, Fl, Si, As, Al, Cl, NH4, NO3, PO4, SO4, CO3, HCO3, etc. This review highlights various techniques for measuring guttation, both qualitative and quantitative, and their use and utility are discussed. Further, the microbiological aspects of guttation, with particular reference to the incidence of algal, fungal, bacterial and viral diseases and toxins produced by these pathogenic organisms, are described. The production of new chemicals by host plant as strategies to protect from harmful effects of pathogens is also outlined. The goal here is to stimulate discussion on our gaps of knowledge in the physiology and biochemistry related to guttation including genetic aspects, and the microbiology associated with guttation. A long-range goal is to design and create improved plant types with increased productivity, and developing effective control measures for plant diseases, to help sustain agriculture in a world with a burgeoning human population. A better understanding of the physiology behind guttation might contribute substantially to this aspiration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler CL, Lock JA, Fleet RW (2008) Rainbows in the grass. II. Arbitrary diagonal incidence. Appl Opt 47:214–219

    Article  Google Scholar 

  • Aloni R, Langhans M, Aloni E, Dreieicher E, Ullrich CI (2005) Root-synthesized cytokinin in Arabidopsis is distributed in the shoot by the transpiration stream. J Exp Bot 56:1535–1544

    Article  PubMed  CAS  Google Scholar 

  • Bald JG (1952) Stomatal droplets and the penetration of leaves by plant pathogens. Am J Bot 39:97–99

    Article  Google Scholar 

  • Brandl MT, Amundson R (2008) Leaf age as a risk factor in contamination of lettuce with Escherichia coli O157:H7 and Salmonella enterica. Appl Environ Microbiol 74:2298–2306

    Article  PubMed  CAS  Google Scholar 

  • Brencic A, Winans SC (2005) Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 69:155–194

    Article  PubMed  CAS  Google Scholar 

  • Cantrill LC, Overall RL, Goodwin PB (1999) Cell-to-cell communication via plant endomembranes. Cell Biol Int 23:653–661

    Article  PubMed  CAS  Google Scholar 

  • Carlton WM, Braun EJ, Gleason ML (1998) Ingress of Clavibacter michiganensis subsp. Michiganensis into tomato leaves through hydathodes. Phytopathology 88:525–529

    Article  PubMed  CAS  Google Scholar 

  • Chen C-C, Chen Y-R (2005) Study on laminar hydathodes of Ficus formosana (Moraceae) I. morphology and ultrastructure. Bot Bull Acad Sin 46:205–215

    Google Scholar 

  • Chen C-C, Chen Y-R (2006) Study on laminar hydathodes of Ficus formosana (Moraceae). II. Morphogenesis of hydathodes. Bot Stud 47:279–292

    Google Scholar 

  • Chen C-C, Chen Y-R (2007) Study on laminar hydathodes of Ficus formosana (moraceae) III. Salt injury of guttation on hydathodes. Bot Stud 48:215–226

    Google Scholar 

  • Crawford KM, Zambryski PC (1999) Plasmodesmata signaling: many roles, sophisticated statutes. Curr Opin Plant Biol 2:382–387

    Article  PubMed  CAS  Google Scholar 

  • Curtis LC (1943) Deleterious effects of guttated fluids on foliage. Am J Bot 30:778–781

    Article  Google Scholar 

  • Daniell H, Khan MS, Allison L (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci 7:84–91

    Article  PubMed  CAS  Google Scholar 

  • Dieffenbach H, Kramer D, Luttge U (1980a) Release of guttation fluid from passive hydathodes of intact barley plants. I. Structural and cytological aspects. Ann Bot 45:397–401

    Google Scholar 

  • Dieffenbach H, Lüttge U, Pitman MG (1980b) Release of guttation fluid from passive hydathodes of intact barley plants. II. The effects of abscisic acid and cytokinins. Ann Bot 45:703–712

    CAS  Google Scholar 

  • Ding XS, Boydston CM, Nelson RS (2001) Presence of Brome mosaic virus in barley guttation fluid and its association with localized cell death response. Phytopathology 91:440–448

    Article  PubMed  CAS  Google Scholar 

  • Dustmamatov AG, Zholkevish VN, Kuznetsov VV (2004) Water pumping activity of the root system in the process of cross-adaptation of sunflower plants to hyperthermia and water deficiency. Russ J Plant Physiol 51:822–826

    Article  CAS  Google Scholar 

  • Endo RM (1967) The role of guttation fluid in fungal disease development. Calif Turfgrass Cult 17:12–13

    Google Scholar 

  • Fletcher AT, Mader JC (2007) Hormone profiling by LC-QToF-MS/MS in dormant Macadamia integrifolia: correlations with abnormal vertical growth. Plant Growth Regul 26:351–361

    Article  CAS  Google Scholar 

  • French CJ, Elder M (1999) Virus particles in guttate and xylem of infected cucumber (Cucumis sativus L.). Ann Appl Biol 134:81–87

    Article  Google Scholar 

  • French CJ, Elder M, Skelton F (1993) Recovering and identifying infectious plant viruses in guttation fluid. HortScience 28:746–747

    Google Scholar 

  • Frisvad JC, Smedsgaard J, Larsen TO, Samson RA (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–241

    Google Scholar 

  • Fukui H, Fukui R, Alvarez AM (1996) Role of indigenous leaf-inhabiting bacteria in suppression of anthurium blight. Phytopathology 86:S36–S36

    Google Scholar 

  • Fukui R, Fukui H, Alvarez AM (1999) Suppression of bacterial blight by a bacterial community isolated from the guttation fluids of Anthuriums. Appl Environ Microbiol 65:1020–1028

    PubMed  CAS  Google Scholar 

  • Galan JE, Wolf-Watz H (2006) Protein delivery into eukaryotic cells by type III secretion machines. Nature 444:567–573

    Article  PubMed  CAS  Google Scholar 

  • Gareis M, Gareis E (2007) Guttation droplets of Penicillium nordicum and Penicillium verrucosum contain high concentrations of the mycotoxins ochratoxin A and B. Mycopathologia 163:207–214

    Article  PubMed  CAS  Google Scholar 

  • Gay PA, Tuzun S (2000) Involvement of a novel peroxidase isozyme and lignification in hydathodes in resistance to black rot disease in cabbage. Can J Bot 78:1144–1149

    CAS  Google Scholar 

  • Georgiou CD, Patsoukis N, Papapostolou I, Zervoudakis G (2006) Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress. Integr Comp Biol 46:691–712

    Article  PubMed  CAS  Google Scholar 

  • Goatley JL, Lewis RW (1966) Composition of guttation fluid from rye, wheat, and barley seedlings. Plant Physiol 41:373–375

    Article  PubMed  CAS  Google Scholar 

  • Gophna U, Ron EZ, Graur D (2003) Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene 312:151–163

    Article  PubMed  CAS  Google Scholar 

  • Grovel O, Pouchus YF, Verbist JF (2003) Accumulation of gliotoxin, a cytotoxic mycotoxin from Aspergillus fumigatus, in blue mussel (Mytilus edulis). Toxicon 42:297–300

    Article  PubMed  CAS  Google Scholar 

  • Grunwald I, Rupprecht I, Schuster G, Kloppstech K (2003) Identification of guttation fluid proteins: the presence of pathogenesis-related proteins in non-infected barley plants. Physiol Plant 119:192–202

    Article  CAS  Google Scholar 

  • Guiry MD, Guiry GM (2008) Vaucheria. Algae base. World-wide electronic publication, National University of Ireland, Galway

    Google Scholar 

  • Hughes RN, Brimblecombe P (1994) Dew and guttation: formation and environmental significance in agricultural and forest meteorology. Agric For Meteorol 67:173–190

    Article  Google Scholar 

  • Hugouvieux V, Barber CE, Daniels MJ (1998) Entry of Xanthomonas campestris pv. campestris into hydathodes of Arabidopsis thaliana leaves: a system for studying early infection events in bacterial pathogenesis. Mol Plant Microbe Interact 11:537–543

    Article  PubMed  CAS  Google Scholar 

  • Hutwimmer S, Wang H, Strasser H, Burgstaller W (2010) Formation of exudate droplets by Metarhizium anisopliae and the presence of destruxins. Mycologia 102:1–10

    Article  PubMed  CAS  Google Scholar 

  • Ivanoff SS (1963) Guttation injuries of plants. Bot Rev 29:202–229

    Article  CAS  Google Scholar 

  • Jackson RW (2009) Plant pathogenic bacteria: genomics and molecular biology. Horizon Scientific Press, Norwich

    Google Scholar 

  • Jennings DH (1991) The role of droplets in helping to maintain a constant growth rate of aerial hyphae. Mycol Res 95:883–884

    Article  Google Scholar 

  • Johnson J (1936) Relation of root pressure to plant disease. Science 84:135–136

    Article  PubMed  CAS  Google Scholar 

  • Kerstetter RE, Zepp RG, Carreira LH (1998) Peroxidases in grass dew derived from guttation: possible role in polymerization of soil organic matter. Biogeochemistry 42:311–323

    Article  CAS  Google Scholar 

  • Komarnytsky S, Borisjuk NV, Borisjuk LG, Alam MZ, Raskin I (2000) Production of recombinant proteins in tobacco guttation fluid. Plant Physiol 124:927–934

    Article  PubMed  CAS  Google Scholar 

  • Koulman A, Lane GA, Christensen MJ, Fraser K, Tapper BA (2007) Peramine and other fungal alkaloids are exuded in the guttation fluid of endophyte-infected grasses. Phytochemistry 68:355–360

    Article  PubMed  CAS  Google Scholar 

  • Koulman A, Lee TV, Fraser K, Johnson L, Arcus V, Lott JS, Rasmussen S, Lane G (2012) Identification of extracellular siderophores and a related peptide from the endophytic fungus Epichloe festucae in culture and endophyte-infected Lolium perenne. Phytochemistry 75:128–139

    Article  PubMed  CAS  Google Scholar 

  • Krasnoff SB, Keresztes I, Gillilan RE, Szebenyi DME, Donzelli BGG, Churchill ACL, Gibson DM (2007) Serinocyclins A and B, cyclic heptapeptides from Metarhizium anisopliae. J Natl Prod 70:1919–1924

    Article  CAS  Google Scholar 

  • Lee RE (2008) Phycology, 4th edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lersten LR, Curtis JD (1982) Hydathodes in Physocarpus (Rosaceae: Spiraeoideae). Can J Bot 60:850–855

    Article  Google Scholar 

  • Lersten LR, Curtis JD (1985) Distribution and anatomy of hydathodes in Asteraceae. Bot Gaz 146:106–114

    Article  Google Scholar 

  • Lersten LR, Curtis JD (1991) Laminar hydathodes in Urticaceae: survey of tribes and anatomical observation on Pilea pumila and Urtica dioica. Plant Syst Evol 176:179–203

    Article  Google Scholar 

  • Lewis RW (1962) Guttation fluid: effects on growth of Claviceps purpurea in vitro. Science 138:690–691

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Parsons AJ, Xue H, Fraser K, Ryan GD, Newman JA, Rasmussen S (2011) Competition between foliar Neotyphodium lolii endophytes and mycorrhizal Glomus spp. fungi in Lolium perenne depends on resource supply and host carbohydrate content. Funct Ecol 25:910–920

    Article  Google Scholar 

  • Lock JA, Adler CL, Fleet RW (2008) Rainbows in the grass. I. External-reflection rainbows from pendant droplets. Appl Opt 47:203–213

    Article  Google Scholar 

  • Logvenkov SA (1993a) On the guttation mechanism in plants. Biophysics 38:865–869

    Google Scholar 

  • Logvenkov SA (1993b) The guttation mechanism in plants. Biophysics 38:889–894

    Google Scholar 

  • Luo W, Goudriaan J (2000) Dew formation on rice under varying durations of nocturnal radiative loss. Agric For Meteorol 104:303–313

    Article  Google Scholar 

  • Maeda E, Maeda K (1987) Ultrastructural studies of leaf hydathodes. I. Wheat (Triticum aestivum) leaf tips. Jpn J Crop Sci 56:641–651

    Article  Google Scholar 

  • Maeda E, Maeda K (1988) Ultrastructural studies of leaf hydathodes II. Rice (Oryza sativa) leaf tips. Jpn J Crop Sci 57:733–742

    Article  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    Article  PubMed  CAS  Google Scholar 

  • Munnecke DE, Chandler PA (1957) A leaf spot of Philodendron related to stomatal exudation and to temperature. Phytopathology 47:299–303

    Google Scholar 

  • Noda T, Kaku H (1999) Growth of Xanthomonas oryzae pv. oryzae in planta and in guttation fluid of rice. Ann Phytopathol Soc Jpn 65:9–14

    Article  Google Scholar 

  • Pedersen O (1993) Long-distance water transport in aquatic plants. Plant Physiol 103:1369–1375

    PubMed  CAS  Google Scholar 

  • Pedersen O (1994) Acropetal water transport in submerged plants. Bot Acta l07:61–65

    Google Scholar 

  • Pedersen O, Jurgensen LB, Sand-Jensen K (1997) Through-flow of water in leaves of a submerged plant is influenced by the apical opening. Planta 202:43–50

    Article  CAS  Google Scholar 

  • Peterson KM, Rychel AL, Torii KU (2010) Out of the mouths of plants: the molecular basis of the evolution and diversity of stomatal development. Plant Cell 22:296–306

    Article  PubMed  CAS  Google Scholar 

  • Pillitteri LJ, Bogenschutz NL, Torii KU (2008) The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in Arabidopsis. Plant Cell Physiol 49:934–943

    Article  PubMed  CAS  Google Scholar 

  • Pilot G, Stransky H, Bushey DF, Pratelli R, Ludewig U, Wingate VP, Frommer WB (2004) Overexpression of GLUTAMINE DUMPER1 leads to hypersecretion of glutamine from hydathodes of Arabidopsis leaves. Plant Cell 16:1827–1840

    Article  PubMed  CAS  Google Scholar 

  • Raleigh GJ (1946) The effect of various ions on guttation of the tomato. Plant Physiol 2:194–200

    Article  Google Scholar 

  • Rao YP, Srivastava DN (1970) Application of phages in investigation of epidemiology of bacterial blight disease of rice. Proc Indian Natl Sci Acad 37:314–321

    Google Scholar 

  • Raper KB, Thom C (1949) A manual of the Penicillia. Williams and Wilkins, Baltimore, MD

    Google Scholar 

  • Raper KB, Thom C (1968) A manual of the Penicillia. Hafner Publishing Company, New York

    Google Scholar 

  • Richards K (2004) Observation and simulation of dew in rural and urban environments. Progr Phys Geogr 28:76–94

    Article  Google Scholar 

  • Romantschuk M (1992) Attachment of plant pathogenic bacteria to plant surfaces. Annu Rev Phytopathol 30:225–243

    Article  PubMed  CAS  Google Scholar 

  • Ryan RP, Vorholter F-J, Potnis N, Jones JB, Van Sluys M-A, Bogdanove AJ, Dow JM (2011) Pathogenomics of Xanthomonas: understanding bacterium–plant interactions. Nat Rev Microbiol 9:344–355

    Article  PubMed  CAS  Google Scholar 

  • Rybicki EP (2009) Third international conference on plant-based vaccines and antibodies. Expert Rev Vaccines 8:1151–1155

    Article  PubMed  Google Scholar 

  • Samson RA, Gams W (1984) The taxonomic situation in the hyphomycete genera Penicillium, Aspergillus and Fusarium. Antonie Van Leeuwenhoek 50:815–824

    Article  PubMed  CAS  Google Scholar 

  • Schmidt O, Czeschlik D (2006) Wood and tree fungi. Springer, Berlin

    Google Scholar 

  • Schoelz JE, Harries PA, Nelson RS (2011) Intracellular transport of plant viruses: finding the door out of the cell. Mol Plant 4(5):813–831. doi:10.1093/mp/ssr070

    Article  PubMed  CAS  Google Scholar 

  • Scott J, Untereiner WA, Wong B, Straus NA, Malloch D (2004) Genotypic variation in Penicillium chysogenum from indoor environments. Mycologia 96:1095–1105

    Article  PubMed  CAS  Google Scholar 

  • Sharabani G, Manulis-Sasson S, Borenstein M, Shulhani R, Lofthouse M, Chalupowicz L, Shtienberg D (2012) The significance of guttation in the secondary spread of Clavibacter michiganensis subsp. michiganensis in tomato greenhouses. Plant Pathol 62(3):578–586. doi:10.1111/j.1365-3059.2012.02673.x

    Article  Google Scholar 

  • Shepherd RW, Wagner GJ (2007) Phylloplane proteins: emerging defences at the aerial frontline? Trends Plant Sci 12:51–56

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Singh TN (2013) Guttation 1: chemistry, crop husbandry and molecular farming. Phytochem Rev 12:147–172. doi:10.1007/s11101-012-9269-x

    Article  CAS  Google Scholar 

  • Singh S, Chauhan JS, Singh TN (2008) Guttation: a potential yield enhancing trait in rice. Curr Sci 95:455–456

    Google Scholar 

  • Singh S, Singh TN, Chauhan JS (2009) Guttation in rice: occurrence, regulation, and significance in varietal improvement. J Crop Improv 23:351–365

    Article  Google Scholar 

  • Slewinski TL, Meeley R, Braun DM (2009) Sucrose transporter1 functions in phloem loading in maize leaves. J Exp Bot 60:881–892

    Article  PubMed  CAS  Google Scholar 

  • Smith EF (1898) Some bacterial diseases of truck crops. Transactions of the Peninsula Horticultural Society, XI annual session, pp 142–147

    Google Scholar 

  • Smith MN, Olien CR (1978) Pathological factors affecting survival of winter barley following controlled freeze tests. Phytopathology 68:773–777

    Article  Google Scholar 

  • Southworth D (2012) Biocomplexity of plant-fungal interactions. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Sperry JS (1983) Observations on the structure and function of hydathodes in Blechnum lehmannii. Am Fern J 73:65–72

    Article  Google Scholar 

  • Stocking CR (1956) Guttation and bleeding. In: Ruhland W (ed) Encyclopedia of plant physiology, vol III. Springer, Berlin, pp 489–502

    Google Scholar 

  • Sutton T, Baumann U, Hayes J, Collins NC, Shi B-J, Schnurbusch T, Hay A, Mayo G, Pallotta M, Tester M, Langridge P (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318:1446–1449

    Article  PubMed  CAS  Google Scholar 

  • Takeda F, Glenn DM (1989) Hydathode anatomy and the relationship between guttation and plant water status in strawberry (Fragaria x ananassa duch.). Acta Hortic (ISHS) 265:387–392

    Google Scholar 

  • Traore MD, Traore VSE, Galzi-Pinel A, Fargette D, Konate G, Traore AS, Traore O (2008) Abiotic transmission of rice yellow mottle virus through soil and contact between plants. Pak J Biol Sci 11:900–904

    Article  PubMed  CAS  Google Scholar 

  • Wagner GJ, Wang E, Shepherd RW (2004) New approaches for studying and exploiting an old protuberance, the plant trichome. Ann Bot 93:3–11

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Skrobek A, Butt TM (2004) Investigations on the destruxin production of the entomopathogenic fungus Metarhizium anisopliae. J Invertebr Pathol 85:168–174

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Ben X, Wang H, Li J, Huang H et al (2011) YUCCA genes are expressed in response to leaf adaxial-abaxial juxtaposition and are required for leaf margin development. Plant Physiol 157:1805–1819

    Article  PubMed  CAS  Google Scholar 

  • Yao J, Allen C (2006) Chemotaxis is required for virulence and competetitive fitness of the bacterial wilt pathogen Ralston solanacearum. J Bacteriol 188:3697–3708

    Article  PubMed  CAS  Google Scholar 

  • Yarwood CE (1952) Guttation due to leaf pressure favours fungus infections. Phytopathology 42:520

    Google Scholar 

  • Young SA, Guo A, Guikema JA, White FF, Leach JE (1995) Rice cationic peroxidase accumulates in xylem vessels during incompatible interactions with Xanthomonas oryzae pv. oryzae. Plant Physiol 107:1333–1341

    Article  PubMed  CAS  Google Scholar 

  • Zholkevich VN (1992) Root pressure. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Dekker, New York, pp 589–603

    Google Scholar 

  • Zolobowska L, Van Gijsegem F (2006) Induction of lateral root structure formation on petunia roots: a novel effect of GM11000 Ralston solanacearum infection impaired in Hrp mutants. Mol Plant Microbe Interact 19:597–606

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author expresses his sincere gratitude to Prof. Ulrich Luettge, Institut fuer Botanik,Technische Universitaet, Darmstadt, Germany, and Editor-in-Chief of ‘Progress in Botany’ for having invited to write this review paper as well as for his fatherly affection during the preparation of the manuscript. The author also extends thanks to Prof. Kym F. Faull, University of California, Los Angeles, USA, for critically reading the manuscript. Dr. Amare Ayalew, Head, School of Plant Sciences, Prof. Chemeda Fininsa, Academic Vice-President, and Dr. Nigussie Dechassa, Research Vice-President of Haramaya University, Ethiopia, also deserve thanks for their sustained cooperation and guidance during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Singh, S. (2014). Guttation: Quantification, Microbiology and Implications for Phytopathology. In: Lüttge, U., Beyschlag, W., Cushman, J. (eds) Progress in Botany. Progress in Botany, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38797-5_7

Download citation

Publish with us

Policies and ethics