Skip to main content

Regulation of PPi Levels Through the Vacuolar Membrane H+-Pyrophosphatase

Part of the Progress in Botany book series (BOTANY,volume 75)

Abstract

Inorganic pyrophosphate (PPi) is a high-energy compound, although the free energy change of its hydrolysis is approximately 60 % that of ATP. PPi is generated as a by-product of macromolecule biosyntheses in plants, especially in proliferating cells. In living cells, the accumulation of PPi causes the suppression of these metabolic processes and the formation of insoluble Ca–PPi complexes. To avoid these negative effects, the vacuolar H+-pyrophosphatase (H+-PPase) hydrolyzes PPi and pumps H+ across the vacuolar membrane to maintain their acidic state. Importantly, recent studies on fugu5, the H+-PPase loss-of-function mutants, have clearly demonstrated that their phenotype is rescued by the expression of the yeast cytosolic PPase IPP1, which hydrolyzes cytosolic PPi but has no effect on vacuolar acidification, thus strongly suggesting that the role of the H+-PPase lies in the consumption of the inhibitory PPi rather than vacuolar acidification. In this chapter we describe the chemical properties and metabolic role of PPi, in addition to the physiological functions of H+-PPase and soluble PPase revealed by using several mutant lines.

Keywords

  • Arabidopsis
  • H+-PPase
  • PPi homeostasis
  • Proton pump
  • Metabolism
  • Germination
  • Gluconeogenesis
  • Sucrose
  • IPP1
  • Vacuolar pH
  • Storage lipid mobilization
  • Leaf development
  • Cotyledon
  • Cell proliferation
  • Cell expansion
  • Compensation
  • fugu5 mutants

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-38797-5_5
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-38797-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

References

  • Avaeva S, Grigorjeva O, Mitkevich V, Sklyankina V, Varfolomeyev S (1999) Interaction of Escherichia coli inorganic pyrophosphatase active sites. FEBS Lett 464:169–173

    PubMed  CrossRef  CAS  Google Scholar 

  • Baltcheffsky M (1967) Inorganic pyrophosphate as an energy donor in photosynthetic and respiratory electron transport phosphorylation systems. Biochem Biophys Res Commun 28:270–276

    CrossRef  Google Scholar 

  • Baltcheffsky M, Baltcheffsky H (1992) Inorganic pyrophosphate and inorganic pyrophosphatases. In: Ernster L (ed) Molecular mechanisms in bioenergetics. Elsevier, Amsterdam, pp 331–348

    CrossRef  Google Scholar 

  • Barrôco RM, Peres A, Droual AM, De Veylder L, le Nguyen SL, De Wolf J, Mironov V, Peerbolte R, Beemster GT, Inzé D, Broekaert WF, Frankard V (2006) The cyclin-dependent kinase inhibitor Orysa; KRP1 plays an important role in seed development of rice. Plant Physiol 142:1053–1064

    PubMed  CrossRef  Google Scholar 

  • Beemster GT, Fiorani F, Inzé D (2003) Cell cycle: the key to plant growth control? Trends Plant Sci 8:154–158

    PubMed  CrossRef  CAS  Google Scholar 

  • Bertoni G (2011) A surprising role for vacuolar pyrophosphatase. Plant Cell 23:2808

    PubMed  CrossRef  CAS  Google Scholar 

  • Carnal NW, Black CC (1983) Phosphofructokinase activities in photosynthetic organisms: the occurrence of pyrophosphate-dependent 6-phosphofructokinase in plants and algae. Plant Physiol 71:150–155

    PubMed  CrossRef  CAS  Google Scholar 

  • Chanson A, Fichmann J, Spear D, Taiz L (1985) Pyrophosphate-driven proton transport by microsomal membranes of corn coleoptiles. Plant Physiol 79:159–164

    PubMed  CrossRef  CAS  Google Scholar 

  • Chastain CJ, Fries JP, Vogel JA, Randklev CL, Vossen AP, Dittmer SK, Watkins EE, Fiedler LJ, Wacker SA, Meinhover KC, Sarath G, Chollet R (2002) Pyruvate, orthophosphate dikinase in leaves and chloroplasts of C3 plants undergoes light-/dark-induced reversible phosphorylation. Plant Physiol 128:1368–1378

    PubMed  CrossRef  CAS  Google Scholar 

  • Conlon I, Raff M (1999) Size control in animal development. Cell 96:235–244

    PubMed  CrossRef  CAS  Google Scholar 

  • Cori GT, Ochoa S, Slein MW, Cori CF (1951) The metabolism of fructose in liver; isolation of fructose-1-phosphate and inorganic pyrophosphate. Biochim Biophys Acta 7:304–317

    PubMed  CrossRef  CAS  Google Scholar 

  • de Graaf BHJ, Rudd JJ, Wheeler MJ, Perry RM, Bell EM, Osman K, Franklin FCH, Franklin-Tong VE (2006) Self-incompatibility in Papaver targets soluble inorganic pyrophosphatases in pollen. Nature 444:490–493

    PubMed  CrossRef  Google Scholar 

  • De Veylder L, Beckman T, Beemster GT, Krols L, Terras F, Landrieu I, van der Schueren E, Maes S, Naudts M, Inzé D (2001) Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. Plant Cell 13:1653–1668

    PubMed  Google Scholar 

  • Delgado-Benarroch L, Weiss J, Egea-Cortines M (2009) The mutants compacta ähnlich, nitida and grandiflora define developmental compartments and a compensation mechanism in floral development in Antirrhinum majus. J Plant Res 122:559–569

    PubMed  CrossRef  Google Scholar 

  • Drozdowicz YM, Kissinger JC, Rea PA (2000) AVP2, a sequence divergent, K+-insensitive H+-translocating inorganic pyrophosphatase from Arabidopsis. Plant Physiol 123:353–362

    PubMed  CrossRef  CAS  Google Scholar 

  • Edwards GE, Huber SG (1981) The C4 pathway. In: Hatch MD, Boarman NK (eds) The biochemistry of plants. A comprehensive treatise, vol 8. Academic, New York, pp 533–574

    Google Scholar 

  • Faraday CD, Spanswick RM (1992) Maize root plasma membranes isolated by aqueous polymer two-phase partitioning: assessment of residual tonoplast ATPase and pyrophosphatase activities. J Exp Bot 43:1583–1590

    CrossRef  CAS  Google Scholar 

  • Ferjani A, Horiguchi G, Yano S, Tsukaya H (2007) Analysis of leaf development in fugu mutants of Arabidopsis reveals three compensation modes that modulate cell expansion in determinate organs. Plant Physiol 144:988–999

    PubMed  CrossRef  CAS  Google Scholar 

  • Ferjani A, Yano S, Horiguchi G, Tsukaya H (2008) Control of leaf morphogenesis by long- and short-distance signaling: differentiation of leaves into sun or shade types and compensated cell enlargement. In: Bögre L, Beemster GTS (eds) Plant growth signaling, vol 10, Plant cell monograph series. Springer, Berlin, pp 47–62

    CrossRef  Google Scholar 

  • Ferjani A, Horiguchi G, Tsukaya H (2010) Organ size control in Arabidopsis: insights from compensation studies. Plant Morphol 22:65–71

    CrossRef  Google Scholar 

  • Ferjani A, Segami S, Horiguchi G, Muto Y, Maeshima M, Tsukaya H (2011) Keep an eye on PPi: the vacuolar-type H+-pyrophosphatase regulates postgerminative development in Arabidopsis. Plant Cell 23:2895–2908

    PubMed  CrossRef  CAS  Google Scholar 

  • Ferjani A, Segami S, Horiguchi G, Sakata A, Maeshima M, Tsukaya H (2012) Regulation of pyrophosphate levels by H+-PPase is central for proper resumption of early plant development. Plant Signal Behav 7:38–42

    PubMed  CrossRef  CAS  Google Scholar 

  • Frey PA, Arabshahi A (1995) Standard free energy change for the hydrolysis of the alpha, beta-phosphoanhydride bridge in ATP. Biochemistry 34:11307–11310

    PubMed  CrossRef  CAS  Google Scholar 

  • Fulda M, Schnurr J, Abbadi A, Heinz E, Browse J (2004) Peroxisomal acyl-CoA synthetase activity is essential for seedling development in Arabidopsis thaliana. Plant Cell 16:394–405

    PubMed  CrossRef  CAS  Google Scholar 

  • Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581:2204–2214

    PubMed  CrossRef  CAS  Google Scholar 

  • Geigenberger P, Hajirezaei M, Geiger M, Deiting U, Sonnewald U, Stitt M (1998) Overexpression of pyrophosphatase leads to increased sucrose degradation and starch synthesis, increased activities of enzymes for sucrose-starch interconversions, and increased levels of nucleotides in growing potato tubers. Planta 205:428–437

    PubMed  CrossRef  CAS  Google Scholar 

  • Gómez-García MR, Losada M, Serrano A (2006) A novel subfamily of monomeric inorganic pyrophosphatases in photosynthetic eukaryotes. Biochem J 395:211–221

    PubMed  CrossRef  Google Scholar 

  • Graham IA (2008) Seed storage oil mobilization. Annu Rev Plant Biol 59:115–142

    PubMed  CrossRef  CAS  Google Scholar 

  • Gross P, ap Rees T (1986) Alkaline inorganic pyrophosphatase and starch synthesis in amyloplasts. Planta 167:140–145

    CrossRef  CAS  Google Scholar 

  • Haber AH (1962) Non-essentiality of concurrent cell divisions for degree of polarization of leaf growth. I. Studies with radiation-induced mitotic inhibition. Am J Bot 49:583–589

    CrossRef  Google Scholar 

  • Hatch MD, Slack CR (1970) Photosynthetic CO2-fixation pathways. Annu Rev Plant Physiol 21:141–162

    CrossRef  CAS  Google Scholar 

  • Heinonen JK (2001) Biological role of inorganic pyrophosphate. Kluwer Academic, Boston

    CrossRef  Google Scholar 

  • Hemerly A, Engler Jde A, Bergounioux C, Van Montagu M, Engler G, Inzé D, Ferreira P (1995) Dominant negative mutants of the Cdc2 kinase uncouple cell division from iterative plant development. EMBO J 14:3925–3936

    PubMed  CAS  Google Scholar 

  • Horiguchi G, Tsukaya H (2011) Organ size regulation in plants: insights from compensation. Front Plant Sci 2:24

    PubMed  CrossRef  Google Scholar 

  • Horiguchi G, Kim GT, Tsukaya H (2005) The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J 43:68–78

    PubMed  CrossRef  CAS  Google Scholar 

  • Horiguchi G, Ferjani A, Fujikura U, Tsukaya H (2006a) Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. J Plant Res 119:37–42

    PubMed  CrossRef  Google Scholar 

  • Horiguchi G, Fujikura U, Ferjani A, Ishikawa N, Tsukaya H (2006b) Large-scale histological analysis of leaf mutants using two simple leaf observation methods: identification of novel genetic pathways governing the size and shape of leaves. Plant J 48:638–644

    PubMed  CrossRef  CAS  Google Scholar 

  • Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics 2008:420747

    PubMed  Google Scholar 

  • Imsande J, Handler P (1961) Pyrophosphorylases. In: Boyer PD, Lardy H, Myrbäck K (eds) The enzymes, 2nd edn. Academic, New York, pp 281–304

    Google Scholar 

  • Josse J, Wong SCK (1971) Inorganic pyrophosphatase of Escherichia coli. In: Boyer PD (ed) The enzymes, 3rd edn. Academic, New York, pp 499–527

    Google Scholar 

  • Kawade K, Horiguchi G, Tsukaya H (2010) Non-cell-autonomously coordinated organ size regulation in leaf development. Development 137:4221–4227

    PubMed  CrossRef  CAS  Google Scholar 

  • Kieber JJ, Signer ER (1991) Cloning and characterization of an inorganic pyrophosphatase gene from Arabidopsis thaliana. Plant Mol Biol 16:345–348

    PubMed  CrossRef  CAS  Google Scholar 

  • Kim JH, Kende H (2004) A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis. Proc Natl Acad Sci USA 101:13374–13379

    PubMed  CrossRef  CAS  Google Scholar 

  • Kornberg A (1948) The participation of inorganic pyrophosphate in the reversible enzymatic synthesis of diphosphopyridine nucleotide. J Biol Chem 176:1475–1476

    PubMed  CAS  Google Scholar 

  • Kornberg A (1957) Pyrophosphorylases and phosphorylases in biosynthetic reactions. Adv Enzymol 18:191–240

    CAS  Google Scholar 

  • Kornberg A (1962) On the metabolic significance of phosphorolytic and pyrophosphorolytic reactions. In: Kasha H, Pullman B (eds) Horizons in biochemistry. Academic, New York, pp 251–264

    Google Scholar 

  • Krebs M, Beyhl D, Görlich E, Al-Rasheid KA, Marten I, Stierhof YD, Hedrich R, Schumacher K (2010) Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Proc Natl Acad Sci USA 107:3251–3256

    PubMed  CrossRef  CAS  Google Scholar 

  • Kriegel A, Krebs M, Schumacher K (2012) Vacuolar pH – who is in charge? The 23rd international conference on arabidopsis research (ICAR2012) abstract book, pp 195

    Google Scholar 

  • Kruger NJ, Kombrink E, Beevers H (1983) Pyrophosphate:fructose 6-phosphate phosphotransferase in germinating castor bean seedlings. FEBS Lett 153:409–412

    CrossRef  CAS  Google Scholar 

  • Kubota K, Ashihara H (1990) Identification of non-equilibrium glycolytic reactions in suspension-cultured plant cells. Biochim Biophys Acta 1036:138–142

    PubMed  CrossRef  CAS  Google Scholar 

  • Li J, Yang H, Peer WA, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B, Undurraga S, Khodakovskaya M, Richards EL, Krizek B, Murphy AS, Gilroy S, Gaxiola R (2005) Arabidopsis H+-PPase AVP1 regulates auxin mediated organ development. Science 310:121–125

    PubMed  CrossRef  CAS  Google Scholar 

  • Lin SM, Tsai JY, Hsiao CD, Huang YT, Chiu CL, Liu MH, Tung JY, Liu TH, Pan RL, Sun YJ (2012) Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. Nature 484:399–403

    PubMed  CrossRef  CAS  Google Scholar 

  • Lundin M, Baltscheffsky H, Ronne H (1991) Yeast PPA2 gene encodes a mitochondrial inorganic pyrophosphatase that is essential for mitochondrial function. J Biol Chem 266:12168–12172

    PubMed  CAS  Google Scholar 

  • Maeshima M (1990) Oligomeric structure of H+-translocating inorganic pyrophosphatase of plant vacuoles. Biochem Biophys Res Commun 168:1157–1162

    PubMed  CrossRef  CAS  Google Scholar 

  • Maeshima M (2000) Vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1465:37–51

    PubMed  CrossRef  CAS  Google Scholar 

  • Maeshima M (2001) Tonoplast transporters: organization and function. Annu Rev Plant Physiol Plant Mol Biol 52:469–497

    PubMed  CrossRef  CAS  Google Scholar 

  • Maeshima M, Yoshida S (1989) Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. J Biol Chem 264:20068–20073

    PubMed  CAS  Google Scholar 

  • Martinoia E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58:83–102

    PubMed  CrossRef  CAS  Google Scholar 

  • May A, Berger S, Hertel T, Köck M (2011) The Arabidopsis thaliana phosphate starvation responsive gene AtPPsPase1 encodes a novel type of inorganic pyrophosphatase. Biochim Biophys Acta 1810:178–185

    PubMed  CrossRef  CAS  Google Scholar 

  • Meyer K, Stecca KL, Ewell-Hicks K, Allen SM, Everard JD (2012) Oil and protein accumulation in developing seeds is influenced by the expression of a cytosolic pyrophosphatase in Arabidopsis. Plant Physiol 159:1221–1234

    PubMed  CrossRef  CAS  Google Scholar 

  • Micol JL (2009) Leaf development: time to turn over a new leaf? Curr Opin Plant Biol 12:9–16

    PubMed  CrossRef  CAS  Google Scholar 

  • Mimura H, Nakanishi Y, Hirono M, Maeshima M (2004) Membrane topology of the H+-pyrophosphatase of Streptomyces coelicolor determined by cysteine-scanning mutagenesis. J Biol Chem 279:35106–35112

    PubMed  CrossRef  CAS  Google Scholar 

  • Mitsuda N, Enami K, Nakata M, Takeyasu K, Sato MH (2001) Novel type Arabidopsis thaliana H+-PPase is localized to the Golgi apparatus. FEBS Lett 488:29–33

    PubMed  CrossRef  CAS  Google Scholar 

  • Mizukami Y, Fischer RL (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci USA 97:942–947

    PubMed  CrossRef  CAS  Google Scholar 

  • Nakanishi Y, Saijo T, Wada Y, Maeshima M (2001) Mutagenic analysis of functional residues in putative substrate binding site and acidic regions of vacuolar H+-pyrophosphatase. J Biol Chem 276:7654–7660

    PubMed  CrossRef  CAS  Google Scholar 

  • Nakanishi Y, Yabe I, Maeshima M (2003) Patch clamp analysis of a H+ pump heterologously expressed in giant yeast vacuoles. J Biochem 134:615–623

    PubMed  CrossRef  CAS  Google Scholar 

  • Neuhaus HE, Stitt M (1991) Inhibition of photosynthetic sucrose synthesis by imidodiphosphate, an analog of inorganic pyrophosphate. Plant Sci 76:49–55

    CrossRef  CAS  Google Scholar 

  • Nore BF, Sakai-Nore Y, Maeshima M, Baltscheffsky M, Nyrén P (1991) Immunological cross-reactivity between proton-pumping inorganic pyrophosphatases of widely phylogenic separated species. Biochem Biophys Res Commun 181:962–967

    PubMed  CrossRef  CAS  Google Scholar 

  • Rea PP, Poole RJ (1986) Chromatographic resolution of H+-translocating pyrophosphatase from H+-translocating ATPase of higher plant tonoplast. Plant Physiol 81:126–129

    PubMed  CrossRef  CAS  Google Scholar 

  • Rojas-Beltrán JA, Dubois F, Mortiaux F, Portetelle D, Gebhardt C, Sangwan RS, du Jardin P (1999) Identification of cytosolic Mg2+-dependent soluble inorganic pyrophosphatases in potato and phylogenetic analysis. Plant Mol Biol 39:449–461

    PubMed  CrossRef  Google Scholar 

  • Salminen A, Parfenyev AN, Salli K, Efimova IS, Magretova NN, Goldman A, Baykov AA, Lahti R (2002) Modulation of dimer stability in yeast pyrophosphatase by mutations at the subunit interface and ligand binding to the active site. J Biol Chem 277:15465–15471

    PubMed  CrossRef  CAS  Google Scholar 

  • Sancha EN, Coello-Coutiño MP, Valencia-Turcotte LG, Hernández-Domínguez EE, Trejo-Yepes G, Rodríguez-Sotres R (2007) Characterization of two soluble inorganic pyrophosphatases from Arabidopsis thaliana. Plant Sci 172:796–807

    CrossRef  Google Scholar 

  • Schulze S, Mant A, Kossmann J, Lloyd JR (2004) Identification of an Arabidopsis inorganic pyrophosphatase capable of being imported into chloroplast. FEBS Lett 565:101–105

    PubMed  CrossRef  CAS  Google Scholar 

  • Segami S, Nakanishi Y, Sato MH, Maeshima M (2010) Quantification, organ-specific accumulation and intracellular localization of type II H+-pyrophosphatase in Arabidopsis thaliana. Plant Cell Physiol 51:1350–1360

    PubMed  CrossRef  CAS  Google Scholar 

  • Sonnewald U (1992) Expression of E. coli inorganic pyrophosphatase in transgenic plants alters photoassimilate partitioning. Plant J 2:571–581

    PubMed  CAS  Google Scholar 

  • Stitt M (1989) Product inhibition of potato tuber pyrophosphate: fructose-6-phosphate phosphotransferase by phosphate and pyrophosphate. Plant Physiol 89:628–633

    PubMed  CrossRef  CAS  Google Scholar 

  • Stitt M, Mieskes G, Soling HD, Heldt HW (1982) On a possible role of fructose 2,6-bisphosphate in regulating photosynthetic metabolism in leaves. FEBS Lett 145:217–222

    CrossRef  CAS  Google Scholar 

  • Stitt M, Wirtz W, Gerhardt R, Heldt HW, Spencer C, Walker DA, Foyer C (1985) A comparative study of metabolite levels in plant leaf material in the dark. Planta 166:354–364

    CrossRef  CAS  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Takeshige K, Tazawa M (1989) Determination of the inorganic pyrophosphate level and its subcellular localization in Chara corallina. J Biol Chem 264:3262–3266

    PubMed  CAS  Google Scholar 

  • Takeshige K, Tazawa M, Hager A (1988) Characterization of the H+ translocating adenosine triphosphatase and pyrophosphatase of vacuolar membranes isolated by means of a perfusion technique from Chara corallina. Plant Physiol 86:1168–1173

    PubMed  CrossRef  CAS  Google Scholar 

  • Tsukaya H (2002) Interpretation of mutants in leaf morphology: genetic evidence for a compensatory system in leaf morphogenesis that provides a new link between cell and organismal theory. Int Rev Cytol 217:1–39

    PubMed  CrossRef  CAS  Google Scholar 

  • Tsukaya H (2005) Leaf shape: genetic controls and environmental factors. Int J Dev Biol 49:547–555

    PubMed  CrossRef  Google Scholar 

  • Tsukaya H (2006) Mechanism of leaf shape determination. Ann Rev Plant Biol 57:477–496

    CrossRef  CAS  Google Scholar 

  • Tsukaya H (2008) Controlling size in multicellular organs: focus on the leaf. PLoS Biol 6:1373–1376

    CrossRef  CAS  Google Scholar 

  • van der Merwe MJ, Groenewald JH, Stitt M, Kossmann J, Botha FC (2010) Downregulation of pyrophosphate: D-fructose-6-phosphate 1-phosphotransferase activity in sugarcane culms enhances sucrose accumulation due to elevated hexose-phosphate levels. Planta 231:595–608

    PubMed  CrossRef  Google Scholar 

  • Weiner H, Stitt M, Heldt HW (1987) Subcellular compartmentation of pyrophosphate and alkaline pyrophosphatase in leaves. Biochim Biophys Acta 893:13–21

    CrossRef  CAS  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 8:e718

    CrossRef  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid from the Japan Society for the Promotion of Science (Grant 16-04179 to A.F.), Grant-in-Aid for Young Scientists (B) (21770036 and 24770039 to A.F.), Scientific Research (23248017 and 24114706, to M.M.), and the Steel Foundation for Environmental Protection Technology (to M.M.). The contribution to the fugu5-related research project of past and present members of Tsukaya laboratory (The University of Tokyo), Horiguchi laboratory (Rikkyo University), Ferjani laboratory (Tokyo Gakugei University), and Maeshima laboratory (Nagoya University) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Maeshima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ferjani, A., Segami, S., Asaoka, M., Maeshima, M. (2014). Regulation of PPi Levels Through the Vacuolar Membrane H+-Pyrophosphatase. In: Lüttge, U., Beyschlag, W., Cushman, J. (eds) Progress in Botany. Progress in Botany, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38797-5_5

Download citation