Skip to main content

Chip-Integrated Solutions for Manipulation and Sorting of Micro Droplets and Fluid Segments by Electrical Actuation

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

The following sections present the novel approach of combining continuous flow analysis (CFA) systems with the advantages of digital microfluidic (DMF) concepts. More precisely, the integration of electrostatic actuation into segmented flows (SF) is demonstrated. It is not focused on whether the actuation method should contingently be termed electrowetting rather than electrostatics, but in fact the intention is to show how well-known microfluidic concepts can be combined into an innovative and promising technique. The investigations show that a reasonable number of standard MEMS manufacturing processes are sufficient to fabricate the appropriate fluidic chips utilizing standard materials such as silicon and glass. The potentials emerging from the new systems are explicated, and a look ahead is given to possible applications as well as to research activities at issue.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S.K. Cho, H. Moon, C.-J. Kim, IEEE J. Microelectromech. Syst. 12, 70–80 (2003)

    Article  Google Scholar 

  2. Internet source: http://www.liquid-logic.com/technology; Accessed 06 Nov 2012

  3. P.C.H. Li, Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery, 1st edn. (CRC Press, Taylor and Francis Group, Florida, 2006)

    Google Scholar 

  4. D.R. Reyes, D. Iossifidis, P.-A. Auroux, A. Manz, Anal. Chem. 74, 2623–2636 (2002)

    Article  Google Scholar 

  5. R.B. Fair, A. Khlystov, T.D. Tailor, V. Ivanov, R.D. Evans, P.B. Griffin, V.K. Vijay Srinivasan Pamula, M.G. Pollack, J. Zhou, IEEE Des. Test Comput. 24, 10–24 (2007)

    Google Scholar 

  6. Internet source: http://en.wikipedia.org/wiki/Lab-on-a-chip; Accessed 06 Nov 2012

  7. S.J. Haswell, Analyst 122, 1R–10R (1997)

    Article  ADS  Google Scholar 

  8. P. Bergveld, Biomed. Microdevices 2, 185–195 (2000)

    Article  Google Scholar 

  9. A.J. de Mello, N. Beard, Lab Chip 3, 11N–19N (2003)

    Article  Google Scholar 

  10. R.B. Fair, Microfluid. Nanofluid. 3, 245–281 (2007)

    Article  Google Scholar 

  11. V.K. Pamula, M.G. Pollack, P.Y. Paik, H. Ren, R.B. Fair, Apparatus for manipulating droplets by electrowetting-based techniques, 2005, United States Patent No. US 6911132 B2

    Google Scholar 

  12. Internet source: http://www.varioptic.com; Accessed 06 Nov 2012

  13. D.J. Griffiths, Introduction to Electrodynamics, 3rd edn. (Prentice Hall, Inc., New Jersey, 1999), pp. 193–196

    Google Scholar 

  14. F.M. White, Fluid Mechanics, 4th edn. (WCB/MCGra-Hill, Singapore, 1999), pp. 24 and 771

    Google Scholar 

  15. C. Wohlfahrt, Springer Materials–The Landolt-Börnstein-Database, Springer Verlag, Berlin Heidelberg, 2008, vol. 17, supplement to IV/6, pp. 29–42

    Google Scholar 

  16. T.S. Khasanshin, A.P. Shchemelev, High Temp. 40, 207–211 (2002)

    Article  Google Scholar 

  17. C. Franjo, L. Segade, C.P. Menaut, J.M. Pico, E. Jiménez, J. Solution Chem. 30, 995–1006 (2001)

    Article  Google Scholar 

  18. C. Wohlfahrt, Springer Materials—The Landolt-Börnstein-Database. (Springer Verlag, Berlin Heidelberg, 2008), vol. IV/17, ch. 309

    Google Scholar 

  19. H. Brauer, D. Sucker, Chem. Ing. Tech. 48, 665–736 (1976)

    Article  Google Scholar 

  20. W.S. Janna, Introduction to Fluid Mechanics, 4th edn. (CRC Press, Taylor & Francis Group, Florida, 2010), p. 283

    Google Scholar 

  21. R.W. Fox, A.T. McDonald, Introduction to Fluid Mechanics, 4th edn. (John Wiley & Sons, Inc., New York Toronto, 1992), p. 439

    Google Scholar 

  22. J. Malsch, Über die Messung der Dielektrizitätskonstanten von Flüssigkeiten bei hohen elektrischen Feldstärken nach einer neuen Methode, Physikalische Zeitschrift XXIX, 1928, pp. 770–777

    Google Scholar 

  23. F. Booth, The dielectric constant of water and the saturation effect. J. Chem. Phys. 19(4), 391–394 (1951)

    Article  MathSciNet  ADS  Google Scholar 

  24. J. Zeng, T. Korsmeyer, Principles of droplet electrohydrodynamics for lob-on-a-chip. Lab Chip 4, 265–277 (2004)

    Article  Google Scholar 

  25. T.B. Jones, J.D. Fowler, Y.S. Chang, C.-J. Kim, Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation. Langmuir 19, 7646–7651 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The presented work has been funded by the German Federal Ministry of Education and research under contract 16SV5058. The authors are much obliged to the following partners and colleagues for their respective contributions to success:

\(\bullet \) Boris Goj for the simulation in Maxwell and Yahia Cheriguen for his help with Comsol.

\(\bullet \) The Bioprocess Engineering Department of the Institute for Bioprocessing and Analytical Measurement Techniques in Heilbad Heiligenstadt, Germany, for support and numerous segmented flows;

\(\bullet \) Andrea Knauer and the Department Physical Chemistry and Microreaction Technology at the Ilmenau University of Technology, Germany;

\(\bullet \) Michael Bertko, Alexander Groß, Stefan Hampl, Lothar Dressler, Manuela Breiter, Tobias Remdt, Birgitt Hartmann, Gabriele Harnisch, David Vopel, Claudia Krauße, and Judith Wolf.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Dittrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dittrich, L., Hoffmann, M. (2014). Chip-Integrated Solutions for Manipulation and Sorting of Micro Droplets and Fluid Segments by Electrical Actuation. In: Köhler, J., Cahill, B. (eds) Micro-Segmented Flow. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38780-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38780-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38779-1

  • Online ISBN: 978-3-642-38780-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics