Skip to main content

Electrical Switching of Droplets and Fluid Segments

  • Chapter
  • First Online:
Micro-Segmented Flow

Abstract

Switching operations in transport of microfluidic compartments are of high interest in miniaturized biotechnology, cell cultivation and screening programs as well as for future applications in miniaturized and automated diagnostics and in particular for automated experiments in ultraminiaturized combinatorial chemistry and combinatorial screenings in multidimensional parameter spaces. In addition to switching by laser actuation, surface forces, by centrifugal forces and electrowetting, electrical switching using electrostatic or dielectric manipulation represents an important class of microfluidic actuation principles. Electrical operations are of particular interest for fast switching and for addressing single selected fluid segments. Thus, they can be used for defining distances and orders of fluid segments and for sorting of droplets and segments in dependence on individual properties. Principles of electrostatic manipulation and the specific conditions for multi phase systems with strong differences in the electrical conductivity and electrochemical behaviour of the involved liquids are described in this chapter. The manipulation by DC fields is compared with the manipulation using AC fields by positive and negative dielectrophoresis. The manipulation by potential switching in Y-shaped micro channels is an example for efficient electrical manipulation of segments without galvanic contact. It can be shown that simple segment manipulation without any electrochemical changing of liquid composition is possible by switching under non-galvanic conditions. It is demonstrated that electronic data sets can be converted into a fluid pattern proving the high reliability of segment operations by potential switching. The robustness related to chemical composition and the applicability to cell suspensions will be shown and the potential for cell cultivation and miniaturized screenings will be discussed. For further development, the possibilities and requirements related to the successive reduction of volumes of fluid segments, downscaling of functional elements and enhancement of switching frequencies are treated. Finally, future tasks for switching coming both from applications with different segment composition, involving cell cultures, multicellular systems, single cell operations, biomolecular diagnostics and from organic and inorganic synthesis, generation and application of nanomaterials, catalysis, single particle processes and supermolecular chemistry are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y.-M. Jung, I.S. Kang, A novel actuation method of transporting droplets by using electrical charging of droplet in a dielectric fluid. Biomicrofluidics 3, 022402–11 (2009)

    Article  Google Scholar 

  2. B. Ahn, K. Lee, R. Louge, K.W. Oh, Concurrent droplet charging and sorting by electrostatic actuation. Biomicrofluidics 3, 044102 (2009)

    Article  Google Scholar 

  3. B. Ahn, K. Lee, R. Panchapakesan, K.W. Oh, On-demand electrostatic droplet charging and sorting. Biomicrofluidics 5, 024113 (2011)

    Article  Google Scholar 

  4. D.J. Im, J. Noh, N.W. Yi, J. Park, I.S. Kang, Influences of electric field on living cells in a charged water-in-oil droplet under electrophoretic actuation. Biomicrofluidics 5, 044112–10 (2011)

    Article  Google Scholar 

  5. D.J. Im, M.M. Ahn, B.S. Yoo, D. Moon, D.W. Lee, I.S. Kang, Discrete electrostatic charge transfer by the electrophoresis of a charged droplet in a dielectric liquid. Langmuir 28, 11656–11661 (2012)

    Article  Google Scholar 

  6. D.W. Lee, D.J. Im, I.S. Kang, Electrophoretic motion of a charged water droplet near an oil-air interface. Appl. Phys. Lett. 100, 221602-4 (2012)

    ADS  Google Scholar 

  7. S. Fiedler, S.G. Shirley, T. Schnelle, G. Fuhr, Dielectrophoretic sorting of particles and cells in a microsystem. Anal. Chem. 70, 1909–1915 (1998)

    Article  Google Scholar 

  8. R. Pethig, Review article–dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4, 022811 (2010)

    Article  Google Scholar 

  9. T.B. Jones, M. Gunji, M. Washizu, M.J. Feldman, Dielectrophoretic liquid actuation and nanodroplet formation. J. Appl.Phys. 89, 1441–1448 (2001)

    Article  ADS  Google Scholar 

  10. J. Zeng, T. Korsmeyer, Principles of droplet electrohydrodynamics for lab-on-a-chip. Lab on a Chip 4, 265–277 (2004)

    Article  Google Scholar 

  11. O.D. Velev, B.G. Prevo, K.H. Bhatt, On-chip manipulation of free droplets. Nature 426, 515–516 (2003)

    Article  ADS  Google Scholar 

  12. J.R. Millman, K.H. Bhatt, B.G. Prevo, O.D. Velev, Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors. Nat. Mater. 4, 98–102 (2005)

    Article  ADS  Google Scholar 

  13. V. Rastogi, O.D. Velev, Development and evaluation of realistic microbioassays in freely suspended droplets on a chip. Biomicrofluidics 1, 014107–17 (2007)

    Article  Google Scholar 

  14. J. Schwartz, J. Vykoukal, P. Gascoyne, Droplet-based chemistry on a programmable micro-chip. Lab on a Chip 4, 11–17 (2004)

    Article  Google Scholar 

  15. D. Chatterjee, B. Hetayothin, A. Wheeler, D. King, R. Garrell, Droplet-based microfluidics with nonaqueous solvents and solutions. Lab on a Chip 6, 199–206 (2006)

    Article  Google Scholar 

  16. J.-C. Baret, O.J. Miller, V. Taly, M. Ryckelynck, A. El-Harrak, L. Frenz, C. Rick, M.L. Samuels, J.B. Hutchison, J.J. Agresti, D.R. Link, D.A. Weitz, A.D. Griffiths, Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab on a Chip 9, 1850–1858 (2009)

    Article  Google Scholar 

  17. K. Ahn, C. Kerbage, T.P. Hunt, R.M. Westervelt, D.R. Link, D.A. Weitz, Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl. Phys. Lett. 88, 024104-3 (2006)

    ADS  Google Scholar 

  18. X. Niu, M. Zhang, S. Peng, W. Wen, P. Sheng, Real-time detection, control, and sorting of microfluidic droplets. Biomicrofluidics 1, 044101–12 (2007)

    Article  Google Scholar 

  19. F. Guo, X.-H. Ji, K. Liu, R.-X. He, L.-B. Zhao, Z.-X. Guo, W. Liu, S.-S. Guo, X.-Z. Zhao, Droplet electric separator microfluidic device for cell sorting. Appl. Phys. Lett. 96, 193701 (2010)

    Article  ADS  Google Scholar 

  20. M.Z. Bazant, T.M. Squires, Induced-charge electrokinetic phenomena. Curr. Opin. Colloid Interface Sci. 15, 203–213 (2010)

    Article  Google Scholar 

  21. M.E. Leunissen, A. van Blaaderen, A.D. Hollingsworth, M.T. Sullivan, P.M. Chaikin, Electrostatics at the oil-water interface, stability, and order in emulsions and colloids. Proc. Nat. Academy Sci. U.S.A 104, 2585–2590 (2007)

    Article  ADS  Google Scholar 

  22. M. Budden, S. Schneider, P.M. Günther, T. Henkel, M. Kielpinski, J.M. Köhler (2012) Splitting and switching of micro fluid segments in closed channels for serial experiments, T3-P-14, Proceedings of IMRET XII (Lyon, 20–22 Febr. 2012), pp.291–292, Poster

    Google Scholar 

  23. M. Budden, S. Schneider, G. A. Groß, M. Kielpinski, T. Henkel and J. M. Köhler, Splitting and switching of micro fluid segments in closed channels for chemical operations in the segment-on demand technology“. Chem. Eng. J.,( In Press). doi:10.1016/j.cej.2012.07.104

  24. M. Budden, S. Schneider, G. A. Groß, M. Kielpinski, T. Henkel, B. Cahill and J. M. Köhler Microfluidic encoding: generation of arbitrary droplet sequences by electrical switching in microchannels. Sens. Actuators A: Phys.,( In Press). doi:10.1016/j.sna.2012.10.013

  25. T. Harvey, R. Wood, G. Denuault, H. Powrie, Effect of oil quality on electrostatic charge generation and transport. J. Electrostat. 55, 1–23 (2002)

    Article  Google Scholar 

  26. R.M. Ehrlich, J.R. Melcher, Bipolar model for traveling-wave induced nonequilibrium double-layer streaming in insulating liquids. Phys. Fluids 25, 1785–1793 (1982)

    Article  ADS  MATH  Google Scholar 

  27. M. Zahn Washabaugh, J. Melcher, Electrohydrodynamic traveling-wave pumping of homogeneous semi-insulating liquids. IEEE Transact. Electr. Insulation 24, 807–834 (1989)

    Google Scholar 

  28. S. Bart, L. Tavrow, M. Mehregany, J. Lang, Microfabricated electrohydrodynamic pumps. Sens. Actuators A: Phys. 21, 193–197 (1990)

    Article  Google Scholar 

  29. F. Moesner, P. Buhler, D. Politano, P. Prati, Electrohydrodynamic motor for tiny vessels. IEEE/ASME Int. Conf. Adv. Intell. Mechatron. 97, 66–69 (1997)

    Article  Google Scholar 

  30. Ajdari, Pumping liquids using asymmetric electrode arrays. Physical Review E 61:R45 LP – R48 (2000)

    Google Scholar 

  31. B.P. Cahill, L.J. Heyderman, J. Gobrecht, A. Stemmer, Electro-osmotic streaming on application of traveling-wave electric fields. Phys. Rev. E 70, 036305-14 (2004)

    Article  ADS  Google Scholar 

  32. P. Ramos, A. Garcia, A. Gonzalez, AC electrokinetic pumping of liquids using arrays of microelectrodes. Bioeng. Bioinspired Syst. II 5839, 305–313 (2005)

    Google Scholar 

  33. J.R. Melcher, Continuum Electromechanics (MIT Press, Cambridge, 1981)

    Google Scholar 

  34. M. Hughes, H. Morgan, M. Flynn, The Dielectrophoretic behavior of submicron latex spheres: influence of surface conductance. J. Colloid Interface Sci. 220, 454–457 (1999)

    Article  Google Scholar 

  35. I. Adamczewski, J.H. Calderwood, Viscosity and charge carrier mobility in the saturated hydrocarbons. J. Phys. D: Appl. Phys. 8, 1211 (1975)

    Google Scholar 

  36. M. Yazdani and J. Seyed-Yagoobi (2009) Effect of charge mobility on electric conduction driven dielectric liquid flow. Electrostatics Joint Conference 2009

    Google Scholar 

  37. J.M. Köhler, A. Funfak, J. Cao, D. Kürsten, S. Schneider, P.M. Günther, Addressing of concentration spaces for bioscreenings by micro segmented flow with microphotometric and microfluorimetric detection. Opt. Nano- and Microsyst. for Bioanaly. 10, 47–81 (2012)

    Google Scholar 

  38. Cao, D. Kursten, S. Schneider, A. Knauer, P.M. Gunther and J.M. Kohler, Uncovering toxicological complexity by multi-dimensional screenings in microsegmented flow: modulation of antibiotic interference by nanoparticles. Lab on a Chip,12, 474–484 (2012)

    Google Scholar 

  39. Knauer, S. Schneider, F. Möller, A. Csáki, W. Fritzsche and J.M. Köhler Screening of Plasmonic Properties of Composed Metal Nanoparticles by Combinatorial Synthesis in Micro Fluid Segment Sequences. Chem. Eng. J.(In press). doi:10.1016/j.cej.2012.10.008

Download references

Acknowledgments

Financial support of the BMBF/VDI/VDE IT (project SOD-Kult, FKZ: 16SV5065) for the research on droplet switching in the frame of segment-on-demand technique for biological applications is gratefully acknowledged. Brian Cahill would like to thank the European Community for financially supporting the Marie Curie ERG project EWETDYNAM under reference number PERG05-GA-2009-247784.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Budden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Budden, M., Schneider, S., Köhler, J.M., Cahill, B.P. (2014). Electrical Switching of Droplets and Fluid Segments. In: Köhler, J., Cahill, B. (eds) Micro-Segmented Flow. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38780-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38780-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38779-1

  • Online ISBN: 978-3-642-38780-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics