Skip to main content

A Linear-Time Algorithm for the Minimum Degree Hypergraph Problem with the Consecutive Ones Property

  • Conference paper
Computing and Combinatorics (COCOON 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7936))

Included in the following conference series:

Abstract

Given a set S, two collections C r and C b of non-empty subsets of S and a positive integer k < |S|, the minimum degree hypergraph (MDH) problem is to find a subset S′ of S such that S′ ∩ B ≠ ∅ for all B ∈ C b and |S′ ∩ R | ≤ k for all R ∈ C r . This paper presents a linear-time algorithm for the MDH problem with C r  ∪ C b having the consecutive ones property. The presented algorithm improves the previous upper bound from O(|S|2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alstrup, S.: Private communication (2012)

    Google Scholar 

  2. Alstrup, S., Holm, J.: Improved algorithms for finding level ancestors in dynamic trees. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 73–84. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms. Journal of Computer and System Sciences 13(3), 335–379 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caprara, A., Toth, P., Fischetti, M.: Algorithms for the set covering problem. Annals of Operations Research 98, 353–371 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carr, R.D., Doddi, S., Konjevod, G., Marathe, M.: On the red-blue set cover problem. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 345–353 (2000)

    Google Scholar 

  6. Chang, M.S., Chung, H.H., Lin, C.C.: An improved algorithm for the red-blue hitting set problem with the consecutive ones property. Information Processing Letters 110(20), 845–848 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dom, M., Guo, J., Niedermeier, R., Wernicke, S.: Red-blue covering problems and the consecutive ones property. Journal of Discrete Algorithms 6(3), 393–407 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feder, T., Motwani, R., Zhu, A.: k-connected spanning subgraphs of low degree. Tech. Rep. TR06-041, Electronic Colloquium on Computational Complexity (2006)

    Google Scholar 

  9. Kuhn, F., von Rickenbach, P., Wattenhofer, R., Welzl, E., Zollinger, A.: Interference in cellular networks: The minimum membership set cover problem. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 188–198. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Mecke, S., Schöbel, A., Wagner, D.: Station location - complexity and approximation. In: 5th Workshop on Algorithmic Methods and Models for Optimization of Railways (2005)

    Google Scholar 

  11. Mecke, S., Wagner, D.: Solving geometric covering problems by data reduction. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 760–771. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Ruf, N., Schobel, A.: Set covering with almost consecutive ones property. Discrete Optimization 1(2), 215–228 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Veinott, A.F., Wagner, H.M.: Optimal capacity scheduling. Operations Research 10(4), 518–532 (1962)

    Article  Google Scholar 

  14. Wang, B.F., Li, C.H.: On the minimum degree hypergraph problem with subset size two and the red-blue set cover problem with the consecutive ones property. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 169–180. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, CH., Ye, JH., Wang, BF. (2013). A Linear-Time Algorithm for the Minimum Degree Hypergraph Problem with the Consecutive Ones Property. In: Du, DZ., Zhang, G. (eds) Computing and Combinatorics. COCOON 2013. Lecture Notes in Computer Science, vol 7936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38768-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38768-5_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38767-8

  • Online ISBN: 978-3-642-38768-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics