Skip to main content

A Review of the Finite Cell Method for Nonlinear Structural Analysis of Complex CAD and Image-Based Geometric Models

  • Conference paper
  • First Online:
Advanced Computing

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 93))

Abstract

The finite cell method (FCM) belongs to the class of immersed boundary methods, and combines the fictitious domain approach with high-order approximation, adaptive integration and weak imposition of unfitted Dirichlet boundary conditions. For the analysis of complex geometries, it circumvents expensive and potentially error-prone meshing procedures, while maintaining high rates of convergence. The present contribution provides an overview of recent accomplishments in the FCM with applications in structural mechanics. First, we review the basic components of the technology using the p- and B-spline versions of the FCM. Second, we illustrate the typical solution behavior for linear elasticity in 1D. Third, we show that it is straightforward to extend the FCM to nonlinear elasticity. We also outline that the FCM can be extended to applications beyond structural mechanics, such as transport processes in porous media. Finally, we demonstrate the benefits of the FCM with two application examples, i.e. the vibration analysis of a ship propeller described by T-spline CAD surfaces and the nonlinear compression test of a CT-based metal foam.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is worthwhile to note that high-order basis functions are significantly more stable than low-order functions for flow problems moderately dominated by convection [8].

  2. 2.

    Using eight threads on two interconnected Intel(R) Xeon(R) W5590 @ 3.33 GHz.

References

  1. Babuška, I.: The finite element method with penalty. Math. Comput. 27(122), 221–228 (1972)

    Google Scholar 

  2. Banhart, J.: Manufacture, characterization and application of cellular metals and metal foams. Prog. Mater. Sci. 46, 559–632 (2001)

    Article  Google Scholar 

  3. Bathe, K.J.: Finite Element Procedures. Prentice-Hall, Englewood Cliffs (1996)

    Google Scholar 

  4. Bazilevs, Y., Hughes, T.: Weak imposition of dirichlet boundary conditions in fluid mechanics. Comput. Fluids 36, 12–26 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bindick, S., Stiebler, M., Krafczyk, M.: Fast kd-tree-based hierarchical radiosity for radiative heat transport problem. Int. J. Numer. Methods Eng. 86, 1082–1100 (2009)

    Article  Google Scholar 

  6. Bishop, J.: Rapid stress analysis of geometrically complex domains using implicit meshing. Comput. Mech. 30, 460–478 (2003)

    Article  MATH  Google Scholar 

  7. Bonet, J., Wood, R.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  8. Cai, Q.: The finite cell method for transport and reaction processes in porous media. Ph.D. thesis, Technische Universität München (2013)

    Google Scholar 

  9. Cottrell, J., Hughes, T., Bazilevs, Y.: Isogeometric Analysis: Towards Integration of CAD and FEA. Wiley, Chichester/Hoboken (2009)

    Book  Google Scholar 

  10. de Souza Neto, E., Perić, D., Owen, D.: Computational Methods for Plasticity: Theory and Applications. Wiley, Chichester (2008)

    Book  Google Scholar 

  11. Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Wiley, Chichester/Hoboken (2003)

    Book  Google Scholar 

  12. Düster, A., Parvizian, J., Yang, Z., Rank, E.: The finite cell method for threedimensional problems of solid mechanics. Comput. Methods Appl. Mech. Eng. 197, 3768–3782 (2010)

    Article  Google Scholar 

  13. Düster, A., Sehlhorst, H.G., Rank, E.: Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method. Comput. Mech. 50, 413–431 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Embar, A., Dolbow, J., Harari, I.: Imposing dirichlet boundary conditions with Nitsche’s method and spline-based finite elements. Int. J. Numer. Methods Eng. 83, 877–898 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Fernández-Méndez, S., Huerta, A.: Imposing essential boundary conditions in mesh-free methods. Comput. Methods Appl. Mech. Eng. 193, 1257–1275 (2004)

    Article  MATH  Google Scholar 

  16. Glowinski, R., Kuznetsov, Y.: Distributed lagrange multipliers based on fictitious domain method for second order elliptic problems. Comput. Methods Appl. Mech. Eng. 196, 1498–1506 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191, 537–552 (2002)

    Google Scholar 

  18. Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems. Springer, Berlin/New York (1997)

    Book  Google Scholar 

  19. Höllig, K.: Finite Element Methods with B-Splines. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Book  MATH  Google Scholar 

  20. Hughes, T.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, Mineola (2000)

    Google Scholar 

  21. Hughes, T., Cottrell, J., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Knežević, J., Frisch, J., Mundani, R.P., Rank, E.: Interactive computing framework for engineering applications. J. Comput. Sci. 7, 591–599 (2011)

    Article  Google Scholar 

  23. Knežević, J., Mundani, R.P., Rank, E.: Interactive computing – virtual planning of hip-joint surgeries with real-time structure simulations. Int. J. Model. Optim. 1(4), 308–313 (2011)

    Google Scholar 

  24. Löhner, R., Cebral, R., Camelli, F., Appanaboyina, S., Baum, J., Mestreau, E., Soto, O.: Adaptive embedded and immersed unstructured grid techniques. Comput. Methods Appl. Mech. Eng. 197, 2173–2197 (2008)

    Article  MATH  Google Scholar 

  25. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)

    Article  MathSciNet  Google Scholar 

  26. Neittaanmäki, P., Tiba, D.: An embedding domains approach in free boundary problems and optimal design. SIAM J. Control Optim. 33(5), 1587–1602 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Parvizian, J., Düster, A., Rank, E.: Finite cell method: h- and p- extension for embedded domain methods in solid mechanics. Comput. Mech. 41, 122–133 (2007)

    Article  Google Scholar 

  28. Parvizian, J., Düster, A., Rank, E.: Toplogy optimization using the finite cell method. Comput. Mech. 13, 57–78 (2012)

    Google Scholar 

  29. Peskin, C.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Piegl, L., Tiller, W.: The NURBS Book. Springer, Berlin/New York (1997)

    Book  Google Scholar 

  31. Ramière, I., Angot, P., Belliard, M.: A fictitious domain approach with spread interface for elliptic problems with general boundary conditions. Comput. Methods Appl. Mech. Eng. 196, 766–781 (2007)

    Article  MATH  Google Scholar 

  32. Rank, E., Düster, A., Schillinger, D., Yang, Z.: The finite cell method: high order simulation of complex structures without meshing. In: Computational Structural Engineering, pp. 87–92. Springer, Dordrecht/New York (2009)

    Google Scholar 

  33. Rank, E., Ruess, M., Kollmannsberger, S., Schillinger, D., Düster, A.: Geometric modeling, isogeometric analysis and the finite cell method. Comput. Methods Appl. Mech. Eng. 249–250, 104–115 (2012)

    Article  Google Scholar 

  34. Rhino3d.: Rhinoceros – NURBS modeling for Windows (2012). http://www.rhino3d.com

  35. Rogers, D.: An Introduction to NURBS with Historical Perspective. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  36. Ruess, M., Tal, D., Trabelsi, N., Yosibash, Z., Rank, E.: The finite cell method for bone simulations: verification and validation. Biomech. Model. Mechanobiol. 11(3), 425–437 (2012)

    Article  Google Scholar 

  37. Ruess, M., Schillinger, D., Bazilevs, Y., Varduhn, V., Rank, E.: Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. Int. J. Numer. Methods Eng. 95(10), 811–846 (2013)

    Article  MathSciNet  Google Scholar 

  38. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann, Amsterdam/Boston (2006)

    MATH  Google Scholar 

  39. Schillinger, D.: The p- and B-spline versions of the geometrically nonlinear finite cell method and hierarchical refinement strategies for adaptive isogeometric and embedded domain analysis. Ph.D. thesis, Technische Universität München (2012)

    Google Scholar 

  40. Schillinger, D., Kollmannsberger, S., Mundani, R.P., Rank, E.: The finite cell method for geometrically nonlinear problems of solid mechanics. IOP Conf. Ser.: Mater. Sci. Eng. 10, 012170 (2010)

    Google Scholar 

  41. Schillinger, D., Rank, E.: An unfitted hp adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry. Comput. Methods Appl. Mech. Eng. 200(47–48), 3358–3380 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Schillinger, D., Ruess, M., Düster, A., Rank, E.: The finite cell method for large deformation analysis. In: Proceedings in Applied Mathematics and Mechanics, vol. 11, pp. 271–272 (2011)

    Article  Google Scholar 

  43. Schillinger, D., Dede’, L., Scott, M., Evans, J., Borden, M., Rank, E., Hughes, T.: An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput. Methods Appl. Mech. Eng. 249–250, 116–150 (2012)

    Google Scholar 

  44. Schillinger, D., Düster, A., Rank, E.: The hp-d adaptive finite cell method for geometrically nonlinear problems of solid mechanics. Int. J. Numer. Methods Eng. 89, 1171–1202 (2012)

    Article  MATH  Google Scholar 

  45. Schillinger, D., Ruess, M., Zander, N., Bazilevs, Y., Düster, A., Rank, E.: Small and large deformation analysis with the p- and B-spline versions of the finite cell method. Comput. Mech. 50(4), 445–478 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sehlhorst, H.G., Jänicke, J., Düster, A., Rank, E., Steeb, H., Diebels, S.: Numerical investigations of foam-like materials by nested high-order finite element methods. Comput. Mech. 45, 45–59 (2009)

    Article  MATH  Google Scholar 

  47. Strang, G., Fix, G.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  48. Szabó, B., Babuška, I.: Finite Element Analysis. Wiley, New York (1991)

    MATH  Google Scholar 

  49. Szabó, B., Düster, A., Rank, E.: The p-version of the finite element method. In: Stein, E., de Borst, R., Hughes, T. (eds.) Encyclopedia of Computational Mechanics, vol. 1, chap. 5, pp. 119–139. Wiley, Chichester (2004)

    Google Scholar 

  50. Yang, Z., Kollmannsberger, S., Düster, A., Ruess, M., Garcia, E., Burgkart, R., Rank, E.: Non-standard bone simulation: interactive numerical analysis by computational steering. Comput. Vis. Sci. 14, 207–216 (2012)

    Article  Google Scholar 

  51. Yang, Z., Ruess, M., Kollmannsberger, S., Düster, A., Rank, E.: An efficient integration technique for the voxel-based finite cell method. Int. J. Numer. Methods Eng. 91, 457–471 (2012)

    Article  Google Scholar 

  52. Zhu, T., Atluri, S.: A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free galerkin method. Comput. Mech. 21, 211–222 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zienkiewicz, O., Taylor, R.: The Finite Element Method – The Basis, vol. 1, 6th edn. Butterworth-Heinemann, Amsterdam/Boston (2005)

    Google Scholar 

Download references

Acknowledgements

D. Schillinger, Q. Cai and R.-P. Mundani gratefully acknowledge support from the Munich Centre of Advanced Computing (MAC) and the International Graduate School of Science and Engineering (IGSSE) at the Technische Universität München. D. Schillinger gratefully acknowledges support from the German National Science Foundation (Deutsche Forschungsgemeinschaft DFG) under grant number SCHI 1249/1-1. The authors thank T.J.R. Hughes, M. Ruess and M.A. Scott for their help with the analysis of the ship propeller.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Schillinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schillinger, D., Cai, Q., Mundani, RP., Rank, E. (2013). A Review of the Finite Cell Method for Nonlinear Structural Analysis of Complex CAD and Image-Based Geometric Models. In: Bader, M., Bungartz, HJ., Weinzierl, T. (eds) Advanced Computing. Lecture Notes in Computational Science and Engineering, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38762-3_1

Download citation

Publish with us

Policies and ethics