A Cost-Efficient Scheduling Algorithm for Traffic Grooming

  • Xianrong Liu
  • Wenhong Tian
  • Minxian Xu
  • Qin Xiong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7924)


In this paper, we consider a fundamental traffic grooming problem in optical line-system: the number of total links with lengths and the max number of wavelengths (capacity) of each fiber are given, also a set of demands (jobs) and their routes are fixed so that the load of each link is known, the problem is to construct a set of fiber intervals so that the total fiber length is minimized (called Fiber Lengths Minimization problem or FLM for abbreviation). It is known that FLM problem is NP-complete in general. In this paper, we propose a 2-approximation algorithm, Longest Link interval First (LLF), which is better than existing best known bound.


Traffic Grooming Fiber Lengths Minimization problem Minimizing Total Fiber Length Longest Link interval First (LLF) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews, M., Zhang, L.: Bounds on fiber minimization in optical networks with fixed fiber capacity. In: Proceedings of IEEE INFOCOM 2005, Miami, FL (March 2005)Google Scholar
  2. 2.
    Andrews, M., Zhang, L.: Complexity of wavelength assignment in optical network optimization. IEEE/ACM Transactions on Networking 17(2), 646–657 (2009)CrossRefGoogle Scholar
  3. 3.
    Brucker, P.: Scheduling Algorithms, 5th edn. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  4. 4.
    Flammini, M., Monaco, G., Moscardelli, L., Shalom, M., Zaks, S.: Approximating the traffic grooming problem with respect to adms and oadms. In: 14th International European Conference on Parallel and Distributed Computing (EuroPar), Las Palmas de Gran Canaria, Spain, August 26-29 (2008)Google Scholar
  5. 5.
    Flammini, M., Monaco, G., Moscardelli, L., Shalom, M., Zaks, S.: Optimizing Regenerator Cost in Traffic Groomings. Technical Report (July 2011)Google Scholar
  6. 6.
    Flammini, M., Monaco, G., Moscardelli, L., Shachnai, H., Shalom, M., Tamir, T., Zaks, S.: Minimizing Total Busy Time in Parallel Scheduling with Application to Optical Networks. Theoretical Computer Science 411(40-42), 3553–3562 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Kani, J., Shimazu, S., Yoshimoto, N., Hadama, H.: Energy-Efficient Optical Access Network Technologies. In: The Proceedings of OFC 2011 (2011)Google Scholar
  8. 8.
    Kilper, D.: Energy-Efficient Networks. In: The Proceedings of OFC 2011 (2011)Google Scholar
  9. 9.
    Pachnicke, S., Paschendaand, T., Krummrich, P.M.: Physical Impairment Based Regenerator Placement and Routing in Translucent Optical Networks. In: The Proceedings of OFC-NFOEC 2008 (2008)Google Scholar
  10. 10.
    Shalom, M., Voloshin, A., Wong, P.W.H., Yung, F.C.C., Zaks, S.: Online Optimization of Busy Time on Parallel Machines. In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol. 7287, pp. 448–460. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Tian, W.: A Dynamic Modeling And Dimensioning Approach For Optical Networks. In: 3rd International Conference on Broadband Communications, Networks and Systems, BROADNETS 2006, October 1-5 (2006)Google Scholar
  12. 12.
    Tian, W.H.: Modeling approaches and provisioning algorithms for dynamic bandwidth adjustment in multi-media networks. In: 2009 HONET, International Symposium on High Capacity Optical Networks and Enabling Technologies (2009)Google Scholar
  13. 13.
    Winkler, P., Zhang, L.: Wavelength assignment and generalized interval graph coloring. In: SODA, pp. 830-831 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xianrong Liu
    • 1
  • Wenhong Tian
    • 1
  • Minxian Xu
    • 1
  • Qin Xiong
    • 1
  1. 1.School of Computer Science and Software EngineeringUniversity of Electronic Science and Technology of ChinaChengduP.R. China

Personalised recommendations