Skip to main content

591 TFLOPS Multi-trillion Particles Simulation on SuperMUC

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7905))

Abstract

Anticipating large-scale molecular dynamics simulations (MD) in nano-fluidics, we conduct performance and scalability studies of an optimized version of the code ls1 mardyn. We present our implementation requiring only 32 Bytes per molecule, which allows us to run the, to our knowledge, largest MD simulation to date. Our optimizations tailored to the Intel Sandy Bridge processor are explained, including vectorization as well as shared-memory parallelization to make use of Hyperthreading. Finally we present results for weak and strong scaling experiments on up to 146016 Cores of SuperMUC at the Leibniz Supercomputing Centre, achieving a speed-up of 133k times which corresponds to an absolute performance of 591.2 TFLOPS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buchholz, M., Bungartz, H.-J., Vrabec, J.: Software design for a highly parallel molecular dynamics simulation framework in chemical engineering. Journal of Computational Science 2(2), 124–129 (2011)

    Article  Google Scholar 

  2. Eckhardt, W., Heinecke, A.: An efficient vectorization of linked-cell particle simulations. In: ACM International Conference on Computing Frontiers, Cagliari, pp. 241–243 (May 2012)

    Google Scholar 

  3. Eckhardt, W., Neckel, T.: Memory-efficient implementation of a rigid-body molecular dynamics simulation. In: Proceedings of the 11th International Symposium on Parallel and Distributed Computing - ISPDC 2012, Munich, pp. 103–110. IEEE (2012)

    Google Scholar 

  4. Germann, T.C., Kadau, K.: Trillion-atom molecular dynamics becomes a reality. International Journal of Modern Physics C 19(09), 1315–1319 (2008)

    Article  Google Scholar 

  5. Gou, C., Kuzmanov, G., Gaydadjiev, G.N.: SAMS multi-layout memory: providing multiple views of data to boost SIMD performance. In: Proceedings of the 24th ACM International Conference on Supercomputing, ICS 2010, pp. 179–188. ACM, New York (2010)

    Chapter  Google Scholar 

  6. Heinecke, A., Pflüger, D.: Emerging architectures enable to boost massively parallel data mining using adaptive sparse grids. International Journal of Parallel Programming 41(3), 357–399 (2013)

    Article  Google Scholar 

  7. Heinecke, A., Trinitis, C.: Cache-oblivious matrix algorithms in the age of multi- and many-cores. Concurrency and Computation: Practice and Experience (2013); accepted for publication

    Google Scholar 

  8. Horsch, M., Vrabec, J., Bernreuther, M., Grottel, S., Reina, G., Wix, A., Schaber, K., Hasse, H.: Homogeneous nucleation in supersaturated vapors of methane, ethane, and carbon dioxide predicted by brute force molecular dynamics. The Journal of Chemical Physics 128(16), 164510 (2008)

    Article  Google Scholar 

  9. Kabadshow, I., Dachsel, H., Hammond, J.: Poster: Passing the three trillion particle limit with an error-controlled fast multipole method. In: Proceedings of the 2011 Companion on High Performance Computing Networking, Storage and Analysis Companion, SC 2011 Companion, pp. 73–74. ACM, New York (2011)

    Chapter  Google Scholar 

  10. Kadau, K., Germann, T.C., Lomdahl, P.S.: Molecular dynamics comes of age: 320 billion atom simulation on bluegene/l. International Journal of Modern Physics C 17(12), 1755–1761 (2006)

    Article  Google Scholar 

  11. Lindahl, E., Hess, B., van der Spoel, D.: Gromacs 3.0: a package for molecular simulation and trajectory analysis. Journal of Molecular Modeling 7, 306–317 (2001)

    Article  Google Scholar 

  12. Olivier, S., Prins, J., Derby, J., Vu, K.: Porting the gromacs molecular dynamics code to the cell processor. In: IEEE International Parallel and Distributed Processing Symposium, IPDPS 2007, pp. 1–8 (March 2007)

    Google Scholar 

  13. Peng, L., Kunaseth, M., Dursun, H., Nomura, K.-i., Wang, W., Kalia, R., Nakano, A., Vashishta, P.: Exploiting hierarchical parallelisms for molecular dynamics simulation on multicore clusters. The Journal of Supercomputing 57, 20–33 (2011)

    Article  Google Scholar 

  14. Piazza, T., Jiang, H., Hammarlund, P., Singhal, R.: Technology Insight: Intel(R) Next Generation Microarchitecture Code Name Haswell (September 2012)

    Google Scholar 

  15. Rahimian, A., Lashuk, I., Veerapaneni, S., Chandramowlishwaran, A., Malhotra, D., Moon, L., Sampath, R., Shringarpure, A., Vetter, J., Vuduc, R., Zorin, D., Biros, G.: Petascale direct numerical simulation of blood flow on 200k cores and heterogeneous architectures. In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2010, pp. 1–11. IEEE Computer Society, Washington, DC (2010)

    Google Scholar 

  16. Rapaport, D.C.: The Art of Molecular Dynamics Simulation. Cambridge University Press (2004)

    Google Scholar 

  17. Rapaport, D.C.: Multibillion-atom molecular dynamics simulation: Design considerations for vector-parallel processing. Computer Physics Communications 174(7), 521–529 (2006)

    Article  MathSciNet  Google Scholar 

  18. Roth, J., Gähler, F., Trebin, H.-R.: A molecular dynamics run with 5 180 116 000 particles. International Journal of Modern Physics C 11(02), 317–322 (2000)

    Article  Google Scholar 

  19. Vrabec, J., Kedia, G.K., Fuchs, G., Hasse, H.: Comprehensive study of the vapour-liquid coexistence of the truncated and shifted lennard-jones fluid including planar and spherical interface properties. Molecular Physics 104(9), 1509–1527 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eckhardt, W. et al. (2013). 591 TFLOPS Multi-trillion Particles Simulation on SuperMUC. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds) Supercomputing. ISC 2013. Lecture Notes in Computer Science, vol 7905. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38750-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38750-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38749-4

  • Online ISBN: 978-3-642-38750-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics