Advertisement

Computational Formulas

  • Andranik Tangian
Chapter
Part of the Studies in Choice and Welfare book series (WELFARE)

Abstract

Chebyshev’s inequality [Korn and Korn 1968, 18.3.5].For a random variable X with expectation\( \mu \) and variance \( \sigma^2 \) it holds :
$$\mathrm{Pr}(|X-\mu|\geq C)\;\leq\; \frac{\sigma^2}{C^2}\qquad(C\;>\;0) $$

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Abramowitz and Stegun 1972]
    Abramowitz M, Stegun I (1972) Handbook ofmathematical functions. Dover, New YorkGoogle Scholar
  2. [Beta distribution 2013]
    Beta distribution (2013).Wikipedia.http://en.wikipedia.org/wiki/Beta distribution. Cited 6 Apr 2013
  3. [Central limit theorem 2013]
    Central limit theorem (2013).Wikipedia.http://en.wikipedia.org/wiki/Central limit theorem. Cited 6 Apr 2013
  4. [Chebyshev’s inequality 2013]
    Chebyshev’s inequality (2013).Wikipedia.http://en.wikipedia.org/wiki/Chebyshev’s inequality. Cited 14 Apr 2013
  5. [Graham et al 1988]
    Graham RL, Knuth DE, Patashnik O (1988) Concrete mathematics.Addison-Wesley, Reading MAGoogle Scholar
  6. [Feller 1968]
    Feller W (1968) An introduction to probability theory and its applications.3rd ed. Wiley, New YorkGoogle Scholar
  7. [Korn and Korn 1968]
    Korn GA, Korn ThM (1968) Mathematical handbook forscientists and engineers. McGrow-Hill, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Andranik Tangian
    • 1
  1. 1.WSI Hans-Böckler-FoundationDüsseldorfGermany

Personalised recommendations