Global Matching Methods

  • Jérôme Euzenat
  • Pavel Shvaiko


The basic similarities presented in Chap.  5 can be considered local because, in order to assess the similarity or dissimilarity between two entities, they only consider their proper characteristics (name, internal structure and extension). We consider here global methods, which consider the characteristics holding between the various entities in order to compare them.


Particle Swarm Optimisation Bayesian Network Markov Network Conditional Probability Table Ontology Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albagli, S., Ben-Eliyahu-Zohary, R., Shimony, S.E.: Markov network based ontology matching. J. Comput. Syst. Sci. 78(1), 105–118 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  2. Bach, T.-L., Dieng-Kuntz, R., Gandon, F.: On ontology matching problems (for building a corporate semantic web in a multi-communities organization). In: Proc. 6th International Conference on Enterprise Information Systems (ICEIS), Porto, Portugal, pp. 236–243 (2004) Google Scholar
  3. Barthélemy, J.-P., Guénoche, A.: Trees and Proximity Representations. Wiley, Chichester (1992) Google Scholar
  4. Bisson, G.: Learning in FOL with similarity measure. In: Proc. 10th National Conference on Artificial Intelligence (AAAI), San Jose, CA, USA, pp. 82–87 (1992) Google Scholar
  5. Bock, J., Hettenhausen, J.: Discrete particle swarm optimisation for ontology alignment. Inf. Sci. 192, 152–173 (2012) CrossRefGoogle Scholar
  6. Bouquet, P., Serafini, L., Zanobini, S., Sceffer, S.: Bootstrapping semantics on the web: meaning elicitation from schemas. In: Proc. 15th International World Wide Web Conference (WWW), Edinburgh, UK, pp. 505–512 (2006) CrossRefGoogle Scholar
  7. Correa, E.S., Freitas, A.A., Johnson, C.: A new discrete particle swarm algorithm applied to attribute selection in a bioinformatics data set. In: Proc. 8th Genetic and Evolutionary Computation Conference (GECCO), Seattle, WA, USA, pp. 35–42 (2006) Google Scholar
  8. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. 39(1), 1–38 (1977) MathSciNetzbMATHGoogle Scholar
  9. Dieng, R., Hug, S.: Comparison of “personal ontologies" represented through conceptual graphs. In: Proc. 13th European Conference on Artificial Intelligence (ECAI), Brighton, UK, pp. 341–345 (1998) Google Scholar
  10. Do, H.-H., Rahm, E.: COMA—a system for flexible combination of schema matching approaches. In: Proc. 28th International Conference on Very Large Data Bases (VLDB), Hong Kong, China, pp. 610–621 (2002) CrossRefGoogle Scholar
  11. Doshi, P., Kolli, R., Thomas, C.: Inexact matching of ontology graphs using expectation-maximization. J. Web Semant. 7(2), 90–106 (2009) CrossRefGoogle Scholar
  12. Ehrig, M.: Ontology Alignment: Bridging the Semantic Gap. Springer, New York (2007). 0-387-32805-X Google Scholar
  13. Ehrig, M., Sure, Y.: Ontology mapping—an integrated approach. In: Proc. 1st European Semantic Web Symposium (ESWS), Hersounisous, Greece. Lecture Notes in Computer Science, vol. 3053, pp. 76–91 (2004) Google Scholar
  14. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley, New York (2005) Google Scholar
  15. Euzenat, J., Valtchev, P.: Similarity-based ontology alignment in OWL-lite. In: Proc. 16th European Conference on Artificial Intelligence (ECAI), Valencia, Spain, pp. 333–337 (2004) Google Scholar
  16. Euzenat, J., Bach, T.L., Barrasa, J., Bouquet, P., De Bo, J., Dieng-Kuntz, R., Ehrig, M., Hauswirth, M., Jarrar, M., Lara, R., Maynard, D., Napoli, A., Stamou, G., Stuckenschmidt, H., Shvaiko, P., Tessaris, S., Van Acker, S., Zaihrayeu, I.: State of the art on ontology alignment. Deliverable D2.2.3, Knowledge web NoE (2004) Google Scholar
  17. Giunchiglia, F., Shvaiko, P.: Semantic matching. Knowl. Eng. Rev. 18(3), 265–280 (2003) CrossRefGoogle Scholar
  18. Hamdi, F., Reynaud, C., Safar, B.: Pattern-based mapping refinement. In: Proc. 17th International Conference on Knowledge Engineering and Knowledge Management (EKAW), Lisbon, Portugal. Lecture Notes in Computer Science, vol. 6317, pp. 1–15 (2010a) Google Scholar
  19. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942–1948 (1995) CrossRefGoogle Scholar
  20. Kennedy, J., Eberhart, R.: A discrete binary version of the particle swarm algorithm. In: Proc. IEEE International Conference on Systems, Man, and Cybernetics, Orlando, FL, USA, pp. 4104–4108 (1997) Google Scholar
  21. Leacock, C., Chodorow, M., Miller, G.: Using corpus statistics and WordNet relations for sense identification. Comput. Linguist. 24(1), 1–40 (1998) Google Scholar
  22. Mädche, A., Staab, S.: Measuring similarity between ontologies. In: Proc. 13th International Conference on Knowledge Engineering and Knowledge Management (EKAW), Siguenza, Spain. Lecture Notes in Computer Science, vol. 2473, pp. 251–263 (2002) Google Scholar
  23. Mädche, A., Zacharias, V.: Clustering ontology-based metadata in the semantic web. In: Proc. 6th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD), Helsinki, Finland, pp. 348–360 (2002) CrossRefGoogle Scholar
  24. Madhavan, J., Bernstein, P., Rahm, E.: Generic schema matching with Cupid. In: Proc. 27th International Conference on Very Large Data Bases (VLDB), Rome, Italy, pp. 48–58 (2001) Google Scholar
  25. Meilicke, C.: Alignment incoherence in ontology matching. PhD thesis, Universität Mannheim, Mannheim, Germany (2011) Google Scholar
  26. Meilicke, C., Stuckenschmidt, H.: An efficient method for computing alignment diagnoses. In: Proc. 3rd International Conference on Web Reasoning and Rule Systems (RR), Chantilly, VA, USA, pp. 182–196 (2009) CrossRefGoogle Scholar
  27. Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Reasoning support for mapping revision. J. Log. Comput. 19(5), 807–829 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  28. Melnik, S., Garcia Molina, H., Rahm, E.: Similarity flooding: a versatile graph matching algorithm. In: Proc. 18th International Conference on Data Engineering (ICDE), San Jose, CA, USA, pp. 117–128 (2002) CrossRefGoogle Scholar
  29. Melnik, S., Bernstein, P., Halevy, A., Rahm, E.: Supporting executable mappings in model management. In: Proc. 24th International Conference on Management of Data (SIGMOD), Baltimore, MD, USA, pp. 167–178 (2005) Google Scholar
  30. Mitra, P., Noy, N., Jaiswal, A.: Ontology mapping discovery with uncertainty. In: Proc. 4th International Semantic Web Conference (ISWC), Galway, Ireland. Lecture Notes in Computer Science, vol. 3729, pp. 537–547 (2005) Google Scholar
  31. Niepert, M., Meilicke, C., Stuckenschmidt, H.: A probabilistic-logical framework for ontology matching. In: Proc. 24th Conference on Artificial Intelligence (AAAI), Atlanta, GA, USA, pp. 1413–1418 (2010) Google Scholar
  32. Padilha, N., Baião, F., Revoredo, K.: Ontology alignment for semantic data integration through foundational ontologies. In: Proc. 2nd International Workshop on Modeling and Reasoning for Business Intelligence (MORE-BI) at the 31st International Conference on Conceptual Modeling (ER), Florence, Italy. Lecture Notes in Computer Science, vol. 7518, pp. 172–181 (2012) Google Scholar
  33. Pan, R., Ding, Z., Yu, Y., Peng, Y.: A Bayesian network approach to ontology mapping. In: Proc. 4th International Semantic Web Conference (ISWC), Galway, Ireland. Lecture Notes in Computer Science, vol. 3729, pp. 563–577 (2005) Google Scholar
  34. Parent, C., Spaccapietra, S.: Database integration: the key to data interoperability. In: Papazoglou, M., Spaccapietra, S., Tari, Z. (eds.) Object-Oriented Data Modeling, pp. 221–253. MIT Press, Cambridge (2000). Chap. 9 Google Scholar
  35. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988) Google Scholar
  36. Qi, G., Ji, Q., Haase, P.: A conflict-based operator for mapping revision. In: Proc. 8th International Semantic Web Conference (ISWC), Chantilly, VA, USA. Lecture Notes in Computer Science, vol. 5823, pp. 521–536 (2009) Google Scholar
  37. Resnik, P.: Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language. J. Artif. Intell. Res. 11, 95–130 (1999) zbMATHGoogle Scholar
  38. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–136 (2006) CrossRefGoogle Scholar
  39. Ritze, D., Meilicke, C., Šváb-Zamazal, O., Stuckenschmidt, H.: A pattern-based ontology matching approach for detecting complex correspondences. In: Proc. 4th International Workshop on Ontology Matching (OM) at the 8th International Semantic Web Conference (ISWC), Chantilly, VA, USA, pp. 25–36 (2009) Google Scholar
  40. Roussey, C., Corcho, Ó., Vilches Blázquez, L.M.: A catalogue of OWL ontology antipatterns. In: Proc. 5th International Conference on Knowledge Capture (K-CAP), Redondo Beach, CA, USA, pp. 205–206 (2009) CrossRefGoogle Scholar
  41. Russell, S., Norvig, P.: Artificial Intelligence: a Modern Approach. Prentice Hall, Englewood Cliffs (1995) zbMATHGoogle Scholar
  42. Scharffe, F.: Representing correspondence patterns with expressive ontology alignments. PhD thesis, University of Innsbruck, Innsbruck, Austria (2008) Google Scholar
  43. Scharffe, F., Fensel, D.: Correspondence patterns for ontology mediation. In: Proc. 16th International Conference on Knowledge Engineering and Knowledge Management (EKAW), Acitrezza, Italy. Lecture Notes in Computer Science, vol. 5268, pp. 83–92 (2008) Google Scholar
  44. Shvaiko, P.: Iterative schema-based semantic matching. PhD thesis, University of Trento, Trento, Italy (2006) Google Scholar
  45. Sotnykova, A., Vangenot, C., Cullot, N., Bennacer, N., Aufaure, M.-A.: Semantic mappings in description logics for spatio-temporal database schema integration. J. Data Semant. III, 143–167 (2005) Google Scholar
  46. Šváb-Zamazal, O.: Pattern-based ontology matching and ontology alignment evaluation. PhD thesis, University of Economics, Prague, Czech Republic (2010) Google Scholar
  47. Tai, K.-C.: The tree-to-tree correction problem. J. ACM 26(3), 422–433 (1979) MathSciNetzbMATHGoogle Scholar
  48. Thayasivam, U., Doshi, P.: Optima results for OAEI 2011. In: Proc. 6th International Workshop on Ontology Matching (OM) at the 10th International Semantic Web Conference (ISWC), Bonn, Germany, pp. 204–211 (2011) Google Scholar
  49. Valtchev, P.: Construction automatique de taxonomies pour l’aide à la représentation de connaissances par objets. Thèse d’informatique, Université Grenoble 1, Grenoble, France (1999) Google Scholar
  50. Valtchev, P., Euzenat, J.: Dissimilarity measure for collections of objects and values. In: Proc. 2nd Symposium on Intelligent Data Analysis (IDA), London, UK. Lecture Notes in Computer Science, vol. 1280, pp. 259–272 (1997) Google Scholar
  51. Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: Proc. 32nd Annual Meeting of the Association for Computational Linguistics (ACL), Las Cruces, NM, USA, pp. 133–138 (1994) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jérôme Euzenat
    • 1
  • Pavel Shvaiko
    • 2
  1. 1.INRIA and LIGGrenobleFrance
  2. 2.Informatica Trentina SpA, while at Department of Engineering and Computer Science (DISI), University of Trento, while at Web of Data, Bruno Kessler Foundation - IRSTTrentoItaly

Personalised recommendations