Generating Multi-objective Optimized Business Process Enactment Plans

  • Andés Jiménez-Ramírez
  • Irene Barba
  • Carmelo del Valle
  • Barbara Weber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7908)


Declarative business process (BP) models are increasingly used allowing their users to specify what has to be done instead of how. Due to their flexible nature, there are several enactment plans related to a specific declarative model, each one presenting specific values for different objective functions, e.g., completion time or profit. In this work, a method for generating optimized BP enactment plans from declarative specifications is proposed to optimize the performance of a process considering multiple objectives. The plans can be used for different purposes, e.g., providing recommendations. The proposed approach is validated through an empirical evaluation based on a real-world case study.


Business Process Management Constraint Programming Planning and Scheduling Constraint-based BP Models 


  1. 1.
    Athan, T.W., Papalambros, P.Y.: A note on weighted criteria methods for compromise solutions in multi-objective optimization. Eng. Optim. 27(2), 155–176 (1996)CrossRefGoogle Scholar
  2. 2.
    Barba, I., Del Valle, C.: A Constraint-based Approach for Planning and Scheduling Repeated Activities. In: Proc. COPLAS, pp. 55–62 (2011)Google Scholar
  3. 3.
    Barba, I., Weber, B., Del Valle, C.: Supporting the Optimized Execution of Business Processes through Recommendations. In: Proc. BPI (2011) (in press)Google Scholar
  4. 4.
    Bartak, R., Cepek, O.: Incremental propagation rules for a precedence graph with optional activities and time windows. Trans. Inst. Meas. Control 32(1), 73–96 (2010)CrossRefGoogle Scholar
  5. 5.
    Brucker, P., Knust, S.: Complex Scheduling (GOR-Publications). Springer-Verlag New York, Inc, Secaucus (2006)Google Scholar
  6. 6.
    Cheng, D., Li, F.Y.: Multiobjective optimization design with pareto genetic algorithm. J. Guid. Control Dyn. 19, 392–397 (1997)CrossRefGoogle Scholar
  7. 7.
    Declare. Declare: Declarative Approach to Workflow Management Systems (2011), (accessed May 1, 2012)
  8. 8.
    Dynadec. Comet Downloads (2010), (accessed May 1, 2012)
  9. 9.
    Ehrgott, M., Gandibleux, X.: Multiobjective combinatorial optimization - theory, methodology, and applications. In: Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys. Int. Series in Op. Res. & Man. Sci, vol. 52, pp. 369–444 (2003)Google Scholar
  10. 10.
    Ferreira, H.M., Ferreira, D.R.: An integrated life cycle for workflow management based on learning and planning. Int. J. Cooper Inform. Syst. 15(4), 485–505 (2006)CrossRefGoogle Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)zbMATHGoogle Scholar
  12. 12.
    Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Morgan Kaufmann, Amsterdam (2004)Google Scholar
  13. 13.
    Haimes, Y.Y., Lasdon, L.S., Wismer, D.A.: On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans. on Syst. Man. Cybern. 1, 296–297 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Jiménez-Ramírez, A., Barba, I., Del Valle, C., Weber, B.: OptBPPlanner: Automatic Generation of Optimized Business Process Enactment Plans. In: Proc. ISD. Springer (2012) (in press)Google Scholar
  15. 15.
    Krogt, R., Geraghty, J., Salman, M.R., Little, J.: On supporting lean methodologies using constraint-based scheduling. J. of Scheduling 13, 301–314 (2010)CrossRefGoogle Scholar
  16. 16.
    Laborie, P., Rogerie, J., Shaw, P., Vilim, P.: Reasoning with conditional time-intervals. part ii: An algebraical model for resources (2009)Google Scholar
  17. 17.
    Lu, R., Sadiq, S., Governatori, G., Yang, X.: Defining adaptation constraints for business process variants. In: Abramowicz, W. (ed.) BIS 2009. LNBIP, vol. 21, pp. 145–156. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Montali, M.: Specification and Verification of Declarative Open Interaction Models: a Logic-Based Approach. PhD thesis, Department of Electronics, Computer Science and Telecommunications Engineering, University of Bologna (2009)Google Scholar
  19. 19.
    Pesic, M.: Constraint-Based Workflow Management Systems: Shifting Control to Users. PhD thesis, Eindhoven University of Technology, Eindhoven (2008)Google Scholar
  20. 20.
    Process Specification Language project (1977), (accessed May 1, 2012)
  21. 21.
    R-Moreno, M.D., Borrajo, D., Cesta, A., Oddi, A.: Integrating planning and scheduling in workflow domains. Expert Syst. Appl. 33(2), 389–406 (2007)CrossRefGoogle Scholar
  22. 22.
    Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Systems. Springer (2012)Google Scholar
  23. 23.
    Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier (2006)Google Scholar
  24. 24.
    Rozinat, A., Wynn, M.T., van der Aalst, W.M.P., ter Hofstede, A.H.M., Fidge, C.J.: Workflow simulation for operational decision support. Data Knowl. Eng. 68(9), 834–850 (2009)CrossRefGoogle Scholar
  25. 25.
    Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow resource patterns: Identification, representation and tool support. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Salido, M.A.: Introduction to planning, scheduling and constraint satisfaction. J. Intell. Manuf. 21(1), 1–4 (2010)CrossRefGoogle Scholar
  27. 27.
    van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inform. Syst. 36(2), 450–475 (2011)CrossRefGoogle Scholar
  28. 28.
    Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer (2007)Google Scholar
  29. 29.
    Westergaard, M., Maggi, F.M.: Looking into the future: Using timed automata to provide a priori advice about timed declarative process models. In: Meersman, R., Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 250–267. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andés Jiménez-Ramírez
    • 1
  • Irene Barba
    • 1
  • Carmelo del Valle
    • 1
  • Barbara Weber
    • 2
  1. 1.Dpto. Lenguajes y Sistemas InformáticosUniversity of SevilleSpain
  2. 2.Department of Computer ScienceUniversity of InnsbruckAustria

Personalised recommendations