Improving Chaotic Ant Swarm Performance with Three Strategies

  • Yu-Ying Li
  • Li-Xiang Li
  • Hai-Peng Peng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7928)


This paper presents an improved chaotic ant swarm (ICAS) by introducing three strategies, which are comprehensive learning strategy, search bound strategy and refinement search strategy, into chaotic ant swarm (CAS) for solving optimization problems. The first two strategies are employed to update ants’ positions, which preserve the diversity of the swarm so that the ICAS discourages premature convergence. In addition, the refinement search strategy is adopted to increase the solution quality in the ICAS. Simulations show that the ICAS significantly enhances solution accuracy and convergence stability of the CAS.


Benchmark Function Chaotic Neural Network Good Exemplar Rastrigin Function Chaotic Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hayakawa, Y., Marumoto, A., Sawada, Y.: Effects of the Chaotic Noise on the Performance of a Neural Network Model for Optimization Problems. Phys. Rev. E 51, 2693–2696 (1995)CrossRefGoogle Scholar
  2. 2.
    Li, B., Jiang, W.: Optimizing Complex Functions by Chaos Search. Int. J. Cybernet. Syst. 29, 409–419 (1998)zbMATHCrossRefGoogle Scholar
  3. 3.
    Kwok, T., Smith, K.: Experimental Analysis of Chaotic Neural Network Models for Combinatorial Optimization under a Unifying Framework. Neural Networks 13, 731–744 (2000)CrossRefGoogle Scholar
  4. 4.
    Ji, M., Tang, H.: Application of Chaos in Simulated Annealing. Chaos Solitons and Fractals 21, 933–941 (2004)zbMATHCrossRefGoogle Scholar
  5. 5.
    Liu, B., Wang, L., Jin, Y., Tang, F., Huang, D.: Improved Particle Swarm Optimization Combined with Chaos. Chaos Solitions and Fractals 25, 1261–1271 (2005)zbMATHCrossRefGoogle Scholar
  6. 6.
    Li, L., Yang, Y., Peng, H., Wang, X.: An Optimization Method Inspired by Chaotic Ant Behavior. International Journal of Bifurcation and Chaos 16, 2351–2364 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Cai, J., li, Q., li, L., Peng, H., Yang, Y.: A Fuzzy Adaptive Chaotic Ant Swarm Optimization for economic dispatch. Electrical Power and Energy Systems 34, 154–160 (2012)CrossRefGoogle Scholar
  8. 8.
    Li, Y., Wen, Q., Li, L., Peng, H.: Hybrid Chotic Ant Swarm Optimization. Chaos Solitons and Fractals 42, 880–889 (2009)CrossRefGoogle Scholar
  9. 9.
    Li, Y., Wen, Q., Zhang, B.: Chotic Ant Swarm Optimization with Passive Congregation. Nonlinear Dynamics 68, 129–136 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Solé, R.V., Miramontes, O., Goodwill, B.C.: Oscillations and chaos in ant societies. Journal of Theoretical Biology 161, 343–357 (1993)CrossRefGoogle Scholar
  11. 11.
    Liang, J., Qin, A.: Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions. IEEE Transactions on Evolutionary Computation 10, 281–295 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yu-Ying Li
    • 1
  • Li-Xiang Li
    • 2
  • Hai-Peng Peng
    • 2
  1. 1.Basis DepartmentInstitute of Chemical Defense of the Chinese People’s Liberation ArmyBeijingChina
  2. 2.Information Security CenterBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations