Discrete Particle Swarm Optimization Algorithm for Virtual Network Reconfiguration

  • Ying Yuan
  • Cuirong Wang
  • Cong Wang
  • Shiming Zhu
  • Siwei Zhao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7928)


Network virtualization allows multiple virtual networks (VNs) to coexist on a shared physical substrate infrastructure. Efficient network resource utilization is crucial for such problem. Most of the current researches focus on algorithms to allocate resources to VNs in mapping. However, reconfiguration problem of running VNs is relatively less explored. Aiming at dynamic scheduling of running VNs, this paper introduces a virtual network reconfiguration model to achieve more substrate network resource utilization. We formulate the virtual network reconfiguration problem as a multi object optimal problem and use discrete particle swarm optimization (DPSO) algorithm to search optimal solution. Experimental results show that by rescheduling the running VNs on substrate network according to the optimal reconfiguration solution our approach can observably reduce the biggest load in both physical node and link load, balance average load and avoid bottlenecks in substrate network so as to gain high VNs accept ratio.


network virtualization reconfiguration algorithm load balancing discrete particle swarm optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Turner, J., Taylor, D.: Diversifying the Internet. In: GLOBECOM 2005, pp. 755–760. IEEE Press, St. Louis (2005)Google Scholar
  2. 2.
    Nick, F., Li, X.G., Jennifer, R.: How to lease the Internet in your spare time. J. ACM SIGCOMM CCF 37(1), 61–64 (2007)CrossRefGoogle Scholar
  3. 3.
    Sarang, B.M., Raghavan, S.V.: Simulated Annealing Algorithm for Virtual Network Reconfiguration. In: 2012 8th EURO-NGI, pp. 95–102. IEEE Press, Karlskrona (2012)Google Scholar
  4. 4.
    Mosharaf, C., Muntasir, R.R., Raouf, B.: ViNEYard:Virtual Network Embedding Algorithms With Coordinated Node and Link Mapping. J. IEEE/ACM Transactions on Networking 20(1), 206–219 (2011)Google Scholar
  5. 5.
    Xiang, C., Sen, S., Zhong, B.Z., Kai, S., Fang, C.Y.: Virtual network embedding Through Topology-Aware Node Ranking. J. ACM SIGCOMM CCR 4(2), 39–47 (2011)Google Scholar
  6. 6.
    Yong, Z., Mostafa, A.: Algorithms for assigning substrate network resources to virtual network components. In: 25th IEEE International Conference on Computer Communications, INFOCOM 2006, pp. 1–12. IEEE Press, Barcelona (2006)Google Scholar
  7. 7.
    Minlan, Y., Yung, Y., Jennifer, R., Mung, C.: Rethinking virtual network embedding: substrate support for path splitting and migration. J. ACM SIGCOMM CCR 38(2), 17–29 (2008)CrossRefGoogle Scholar
  8. 8.
    Farooq Butt, N., Chowdhury, M., Boutaba, R.: Topology-awareness and reoptimization mechanism for virtual network embedding. In: Crovella, M., Feeney, L.M., Rubenstein, D., Raghavan, S.V. (eds.) NETWORKING 2010. LNCS, vol. 6091, pp. 27–39. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Clarissa, C.M., Lisandro, Z.G., Giorgio, N., Marcus, B.: Distributed autonomic resource management for network virtualization. In: NOMS 2010, pp. 463–470. IEEE Press, Osaka (2010)Google Scholar
  10. 10.
    Ilhem, F., Nadjib, A., Guy, P., Hubert, Z.: VNR Algorithm: A Greedy Approach For Virtual Networks Reconfigurations. In: GLOBECOM 2011, pp. 1–6. IEEE Press, Houston (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ying Yuan
    • 1
  • Cuirong Wang
    • 2
  • Cong Wang
    • 2
  • Shiming Zhu
    • 2
  • Siwei Zhao
    • 3
  1. 1.School of Information Science and EngineeringNortheastern UniversityShenyangChina
  2. 2.School of Northeastern University at QinhuangdaoQinhuangdaoChina
  3. 3.School of Electronic and Information EngineeringBeijing Jiaotong UniversityBeijingChina

Personalised recommendations