Parameter Identification of RVM Runoff Forecasting Model Based on Improved Particle Swarm Optimization

  • Yuzhi Shi
  • Haijiao Liu
  • Mingyuan Fan
  • Jiwen Huang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7928)


Runoff forecasting which subjects to model pattern and parameter optimization, has an important significance of reservoir scheduling and water resources management decision-makings. This paper proposed a new forecasting model coupled phase space reconstruction technology with relevance vector machine, and its model parameters is optimized by an improved PSO algorithm. The monthly runoff time series from 1953 to 2003 at Manwan station is selected as an example. The results show that the improved PSO has efficient optimization performance and the proposed forecasting model could obtain higher prediction accuracy.


Improved PSO algorithm Relevance vector machine Phase space reconstruction parameter identification Runoff forecasting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shi, Y.Z., Zhou, H.C.: Research on monthly flow uncertain reasoning model based on cloud theory. Sci. China Tech. Sci. 53, 2408–2413 (2010)CrossRefGoogle Scholar
  2. 2.
    Sivakumar, B., Jayawardena, A.W., Fernando, T.M.K.G.: River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. Journal of Hydrology 265, 225–245 (2002)CrossRefGoogle Scholar
  3. 3.
    Yu, X.Y., Liong, S.Y., Babovic, V.: EC-SVM approach for real time hydrologic forecasting. Journal of Hydroinformatics 6(3), 209–223 (2004)zbMATHGoogle Scholar
  4. 4.
    Tipping, M.E.: The relevance vector machine. Advances in Neural Information Processing System 12, 652–658 (2000)Google Scholar
  5. 5.
    Agarwal, A., Triggs, B.: 3D human pose from silhouettes by relevance vector regression. Computer Vision and Pattern Recognition 2, 882–888 (2004)Google Scholar
  6. 6.
    Bowd, C., Medeiros, F.A., et al.: Relevance Vector Machine and Support Vector Machine Classifier Analysis of Scanning Laser Polarimetry Retinal Nerve Fiber Layer Measurements. Investigative Ophthalmology & Visual Science 46, 1322–1329 (2005)CrossRefGoogle Scholar
  7. 7.
    Chen, S., Gunn, S.R., Harris, C.J.: The relevance vector machine technique for channel equalization application. IEEE Trans on Neural Networks 12(6), 1529–1532 (2002)CrossRefGoogle Scholar
  8. 8.
    Kantz, H., Schreiber, T.: Nonlinear time series analysis. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  9. 9.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc IEEE Conf. on Neural Networks, pp. 1942–1948. IEEE Press, Piscataway (1995)Google Scholar
  10. 10.
    Shi, Y., Eberhart, R.C.: A Modified Particle Swarm Optimizer. In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 69–73. IEEE Press (1998)Google Scholar
  11. 11.
    Clerc, M., Kennedy, J.: The Particle Swarm: Explosion, Stability, and Convergence in a Multi-dimensional Complex Space. IEEE Transactions on Evolutionary Computation 6, 58–73 (2002)CrossRefGoogle Scholar
  12. 12.
    Eberhart, R.C., Shi, Y.: Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization. In: Proceedings of the Congress on Evolutionary Computation, pp. 84–88 (2000)Google Scholar
  13. 13.
    Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters 85(6), 317–325 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Jiang, H.M., Xie, K., Ren, C., et al.: A Novel Particle Swarm Optimization with Stochastic Stagnation. Journal of Sichuan University (Engineering Science Edtion) 38(4), 118–121 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yuzhi Shi
    • 1
  • Haijiao Liu
    • 1
  • Mingyuan Fan
    • 1
  • Jiwen Huang
    • 1
  1. 1.Water Resources Research Institute of Shandong ProvinceJinanChina

Personalised recommendations