Skip to main content

Rainfall Forecasting Based on Ensemble Empirical Mode Decomposition and Neural Networks

  • Conference paper
Advances in Computational Intelligence (IWANN 2013)

Abstract

In this paper a methodology for rainfall forecasting is presented, using the principle of decomposition and ensemble. In the proposed framework, the employed decomposition technique is the Ensemble Empirical Mode Decomposition (EEMD), which divides the original data into a set of simple components. Each component is modeled with a Feed Forward Neural Network (FNN) as a forecasting tool. Finally, the individual forecasting results for all components are combined to obtain the prediction result of the input signal. Experiments were performed on a real-observed rainfall data, and the attained results were compared against a single FNN model for the raw data, showing an improvement on the system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abhishek, K., Kumar, A., Ranjan, R., Kumar, S.: A rainfall prediction model using artificial neural network. In: 2012 IEEE Control and System Graduate Research Colloquium (ICSGRC), pp. 82–87 (July 2012)

    Google Scholar 

  2. Chen, C.F., Lai, M.C., Yeh, C.C.: Forecasting tourism demand based on empirical mode decomposition and neural network. Knowledge-Based Systems 26, 281–287 (2012)

    Article  Google Scholar 

  3. French, M.N., Krajewski, W.F., Cuykendall, R.R.: Rainfall forecasting in space and time using a neural network. Journal of Hydrology 137(1), 1–31 (1992)

    Article  Google Scholar 

  4. Guo, Z., Zhao, W., Lu, H., Wang, J.: Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renewable Energy 37(1), 241–249 (2012)

    Article  Google Scholar 

  5. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2(5), 359–366 (1989)

    Article  Google Scholar 

  6. Hsu, K.L., Gupta, H.V., Sorooshian, S.: Artificial neural network modeling of the rainfall-runoff process. Water Resources Research 31(10), 2517–2530 (1995)

    Article  Google Scholar 

  7. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences 454(1971), 903–995 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Huang, N., Shen, Z., Long, S.: A new view of nonlinear water waves: The Hilbert spectrum. Annual Review of Fluid Mechanics 31(1), 417–457 (1999)

    Article  MathSciNet  Google Scholar 

  9. Hung, N.Q., Babel, M.S., Weesakul, S., Tripathi, N.K.: An artificial neural network model for rainfall forecasting in Bangkok, Thailand. Hydrology and Earth System Sciences 13(8), 1413–1425 (2008)

    Article  Google Scholar 

  10. Li, X.: Temporal structure of neuronal population oscillations with empirical model decomposition. Physics Letters A 356(3), 237–241 (2006)

    Article  MATH  Google Scholar 

  11. Luk, K., Ball, J., Sharma, A.: A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. Journal of Hydrology 227(1), 56–65 (2000)

    Article  Google Scholar 

  12. Tang, L., Yu, L., Wang, S., Li, J., Wang, S.: A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting. Applied Energy 93, 432–443 (2012)

    Article  Google Scholar 

  13. Vovoras, D., Tsokos, C.P.: Statistical analysis and modeling of precipitation data. Nonlinear Analysis: Theory, Methods & Applications 71(12), e1169–e1177 (2009)

    Google Scholar 

  14. White, H.: Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings. Neural Networks 3(5), 535–549 (1990)

    Article  Google Scholar 

  15. Wu, Z., Huang, N.E.: Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advances in Adaptive Data Analysis 1(1), 1–41 (2009)

    Article  Google Scholar 

  16. Yu, L., Wang, S., Lai, K.K.: Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm. Energy Economics 30(5), 2623–2635 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beltrán-Castro, J., Valencia-Aguirre, J., Orozco-Alzate, M., Castellanos-Domínguez, G., Travieso-González, C.M. (2013). Rainfall Forecasting Based on Ensemble Empirical Mode Decomposition and Neural Networks. In: Rojas, I., Joya, G., Gabestany, J. (eds) Advances in Computational Intelligence. IWANN 2013. Lecture Notes in Computer Science, vol 7902. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38679-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38679-4_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38678-7

  • Online ISBN: 978-3-642-38679-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics