Skip to main content

Border-Sensitive Learning in Kernelized Learning Vector Quantization

  • Conference paper
Advances in Computational Intelligence (IWANN 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7902))

Included in the following conference series:

Abstract

Prototype based classification approaches are powerful classifiers for class discrimination of vectorial data. Famous examples are learning vector quantization models (LVQ) and support vector machines (SVMs). In this paper we propose the application of kernel distances in LVQ such that the LVQ-algorithm can handle the data in a topologically equivalent data space compared to the feature mapping space in SVMs. Further, we provide strategies to force the LVQ-prototypes to be class border sensitive. In this way an alternative to SVMs based on Hebbian learning is established. After presenting the theoretical background, we demonstrate the abilities of the model for an illustrative toy example and for the more challenging task of classification of Wilson’s disease patients according to their neurophysiological impairments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aronszajn, N.: Theory of reproducing kernels. Transactions of the American Mathematical Society 68, 337–404 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barthel, H., Villmann, T., Hermann, W., Hesse, S., Kühn, H.-J., Wagner, A., Kluge, R.: Different patterns of brain glucose consumption in Wilsons disease. Zeitschrift für Gastroenterologie 39, 241 (2001)

    Google Scholar 

  3. Biehl, M., Hammer, B., Schneider, P., Villmann, T.: Metric learning for prototype-based classification. In: Bianchini, M., Maggini, M., Scarselli, F., Jain, L. (eds.) Innovations in Neural Information Paradigms and Applications. SCI, vol. 247, pp. 183–199. Springer, Berlin (2009)

    Chapter  Google Scholar 

  4. Bunte, K., Schneider, P., Hammer, B., Schleif, F.-M., Villmann, T., Biehl, M.: Limited rank matrix learning, discriminative dimension reduction and visualization. Neural Networks 26(1), 159–173 (2012)

    Article  Google Scholar 

  5. Hammer, B., Strickert, M., Villmann, T.: Supervised neural gas with general similarity measure. Neural Processing Letters 21(1), 21–44 (2005)

    Article  Google Scholar 

  6. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Networks 15(8-9), 1059–1068 (2002)

    Article  Google Scholar 

  7. Haykin, S.: Neural Networks. A Comprehensive Foundation. Macmillan, New York (1994)

    MATH  Google Scholar 

  8. Hermann, W., Barthel, H., Hesse, S., Grahmann, F., Kühn, H.-J., Wagner, A., Villmann, T.: Comparison of clinical types of Wilson’s disease and glucose metabolism in extrapyramidal motor brain regions. Journal of Neurology 249(7), 896–901 (2002)

    Article  Google Scholar 

  9. Hermann, W., Eggers, B., Barthel, H., Clark, D., Villmann, T., Hesse, S., Grahmann, F., Kühn, H.-J., Sabri, O., Wagner, A.: Correlation between automated writing movements and striatal dopaminergic innervation in patients with Wilson’s disease. Journal of Neurology 249(8), 1082–1087 (2002)

    Article  Google Scholar 

  10. Hermann, W., Günther, P., Wagner, A., Villmann, T.: Klassifikation des Morbus Wilson auf der Basis neurophysiologischer Parameter. Der Nervenarzt 76, 733–739 (2005)

    Article  Google Scholar 

  11. Hermann, W., Villmann, T., Grahmann, F., Kühn, H., Wagner, A.: Investigation of fine motoric disturbances in Wilson’s disease. Neurological Sciences 23(6), 279–285 (2003)

    Article  Google Scholar 

  12. Hermann, W., Villmann, T., Wagner, A.: Elektrophysiologisches Schädigungsprofil von Patienten mit einem Morbus Wilson’. Der Nervenarzt 74(10), 881–887 (2003)

    Article  Google Scholar 

  13. Hermann, W., Wagner, A., Kühn, H.-J., Grahmann, F., Villmann, T.: Classification of fine-motoric disturbances in Wilson’s disease using artificial neural networks. Acta Neurologica Scandinavia 111(6), 400–406 (2005)

    Article  Google Scholar 

  14. Herrmann, M., Bauer, H.-U., Der, R.: The ‘perceptual magnet’ effect: A model based on self-organizing feature maps. In: Smith, L.S., Hancock, P.J.B. (eds.) Neural Computation and Psychology, Stirling, pp. 107–116. Springer (1994)

    Google Scholar 

  15. Kästner, M., Hammer, B., Biehl, M., Villmann, T.: Functional relevance learning in generalized learning vector quantization. Neurocomputing 90(9), 85–95 (2012)

    Article  Google Scholar 

  16. Kohonen, T.: Self-Organizing Maps (Second Extended Edition). Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (1997)

    Google Scholar 

  17. Martinetz, T.M., Berkovich, S.G., Schulten, K.J.: ‘Neural-gas’ network for vector quantization and its application to time-series prediction. IEEE Trans. on Neural Networks 4(4), 558–569 (1993)

    Article  Google Scholar 

  18. Mercer, J.: Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society, London, A 209, 415–446 (1909)

    Article  MATH  Google Scholar 

  19. Sato, A., Yamada, K.: Generalized learning vector quantization. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Proceedings of the 1995 Conference on Advances in Neural Information Processing Systems 8, pp. 423–429. MIT Press, Cambridge (1996)

    Google Scholar 

  20. Schleif, F.-M., Villmann, T., Hammer, B., Schneider, P.: Efficient kernelized prototype based classification. International Journal of Neural Systems 21(6), 443–457 (2011)

    Article  Google Scholar 

  21. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press (2002)

    Google Scholar 

  22. Schneider, P., Bunte, K., Stiekema, H., Hammer, B., Villmann, T., Biehl, M.: Regularization in matrix relevance learning. IEEE Transactions on Neural Networks 21(5), 831–840 (2010)

    Article  Google Scholar 

  23. Schneider, P., Hammer, B., Biehl, M.: Adaptive relevance matrices in learning vector quantization. Neural Computation 21, 3532–3561 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Schneider, P., Hammer, B., Biehl, M.: Distance learning in discriminative vector quantization. Neural Computation 21, 2942–2969 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Steinwart, I.: On the influence of the kernel on the consistency of support vector machines. Journal of Machine Learning Research 2, 67–93 (2001)

    MathSciNet  Google Scholar 

  26. Strickert, M.: Enhancing M|G|RLVQ by quasi step discriminatory functions using 2nd order training. Machine Learning Reports 5(MLR-06-2011), 5–15 (2011), http://www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr_06_2011.pdf , ISSN:1865-3960

  27. Strickert, M., Schleif, F.-M., Seiffert, U., Villmann, T.: Derivatives of Pearson correlation for gradient-based analysis of biomedical data. Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial (37), 37–44 (2008)

    Google Scholar 

  28. Villmann, T.: Sobolev metrics for learning of functional data - mathematical and theoretical aspects. Machine Learning Reports, 1(MLR-03-2007), 1–15 (2007), http://www.uni-leipzig.de/~compint/mlr/mlr_01_2007.pdf , ISSN:1865-3960

  29. Villmann, T., Geweniger, T., Kästner, M.: Border sensitive fuzzy classification learning in fuzzy vector quantization. Machine Learning Reports, 6(MLR-06-2012), 23–39 (2012), http://www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr_06_2012.pdf , ISSN:1865-3960

  30. Villmann, T., Haase, S.: Divergence based vector quantization. Neural Computation 23(5), 1343–1392 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Villmann, T., Haase, S., Kästner, M.: Gradient based learning in vector quantization using differentiable kernels. In: Estevez, P.A., Principe, J.C., Zegers, P. (eds.) Advances in Self-Organizing Maps. AISC, vol. 198, pp. 193–204. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  32. Witoelar, A., Gosh, A., de Vries, J., Hammer, B., Biehl, M.: Window-based example selection in learning vector quantization. Neural Computation 22(11), 2924–2961 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. Yin, C., Mu, S., Tian, S.: Using cooperative clustering to solve multiclass problems. In: Wang, Y., Li, T. (eds.) Foundations of Intelligent Systems. AISC, vol. 122, pp. 327–334. Springer, Heidelberg (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kästner, M., Riedel, M., Strickert, M., Hermann, W., Villmann, T. (2013). Border-Sensitive Learning in Kernelized Learning Vector Quantization. In: Rojas, I., Joya, G., Gabestany, J. (eds) Advances in Computational Intelligence. IWANN 2013. Lecture Notes in Computer Science, vol 7902. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38679-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38679-4_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38678-7

  • Online ISBN: 978-3-642-38679-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics