Advertisement

Transform! Patterns for Data Migration

  • Andreas Rüping
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7840)

Abstract

When an existing application is replaced by a new one, its data has to be transferred from the old world to the new. This process, known as data migration, faces several important requirements. Data migration must be accurate, otherwise valuable data would be lost. It must be able to handle legacy data of poor quality. It must be efficient and reliable, so as not to jeopardise the launch of the new application. This paper presents a collection of patterns for handling a data migration effort. The patterns focus on the design of the migration code as well as on process issues.

Keywords

Data Transformation Migration Process Data Migration Robust Processing Legacy Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beck, K.: Test-Driven Development — By Example. Addison-Wesley (2002)Google Scholar
  2. 2.
    Bisbal, J., Lawless, D., Wu, B., Grimson, J.: Legacy Information Systems: Issues and Directions. IEEE Software 16(5) (September / October 1999)Google Scholar
  3. 3.
    Cimitile, A., De Carlini, U., De Lucia, A.: Incremental Migration Strategies: Data Flow Analysis for Wrapping. In: 5th Working Conference on Reverse Engineering. IEEE, Honolulu (1998)Google Scholar
  4. 4.
    The Economist.com data migration to Drupal (October 2010), http://drupal.org/node/915102
  5. 5.
    Fowler, M.: Incremental Migration (July 2008), http://martinfowler.com/bliki/IncrementalMigration.html
  6. 6.
    Keller, W.: The Bridge to the New Town — A Legacy System Migration Pattern. In: Devos, M., Rüping, A. (eds.) Proceedings of the 5th European Conference on Pattern Languages of Programs, EuroPLoP 2000. Universitätsverlag, Konstanz (2001)Google Scholar
  7. 7.
    Haller, K.: Data Migration Project Management and Standard Software: Experiences in Avaloq Implementation Projects. In: Dinter, B., Winter, R., Chamoni, P., Gronau, N., Turowski, K. (eds.) Synergien Durch Integration Und Informationslogistik, DW 2008, St. Gallen, Switzerland. LNI, vol. 138. Gesellschaft für Informatik (2008)Google Scholar
  8. 8.
    Haller, K.: Towards the Industrialization of Data Migration: Concepts and Patterns for Standard Software Implementation Projects. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 63–78. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Matthes, F., Schulz, C.: Towards an integrated data migration process model - State of the art and literature overview. Technische Universität München, Fakultät für Informatik, Technical Report (2011), http://wwwmatthes.in.tum.de/file/attachments/wikis/sebis-article-archive/ms11-towards-an-integrated-data-migration/tb_DataMigration.pdf
  10. 10.
    Matthes, F., Schulz, C., Haller, K.: Testing & quality assurance in data migration projects. In: 27th IEEE International Conference on Software Maintenance, ICSM. IEEE, Williamsburg (2011)Google Scholar
  11. 11.
    Morris, J.: Practical Data Migration. British Computer Society (2006)Google Scholar
  12. 12.
    Wagner, M., Wellhausen, T.: Patterns for Data Migration Projects. In: Weiss, M., Avgeriou, P. (eds.) Proceedings of the 15th European Conference on Pattern Languages of Programs, EuroPLoP 2010. ACM Digital Library (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andreas Rüping
    • 1
  1. 1.HamburgGermany

Personalised recommendations