Skip to main content

Object Detection by Simple Fuzzy Classifiers Generated by Boosting

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7894))

Included in the following conference series:

Abstract

Finding key points based on SURF and SIFT and size of their vector reduction is a classical approach for object recognition systems. In this paper we present a new framework for object recognition based on generating simple fuzzy classifiers using key points and boosting meta learning to distinguish between one known class and other classes. We tested proposed approach on a known image dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: European Conference in Computer Vision, pp. 404–417 (2006)

    Google Scholar 

  2. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). International Journal of Computer Vision and Image Understanding (CVIU) 110(3), 346–359 (2008)

    Article  Google Scholar 

  3. Cpałka, K.: A method for designing flexible neuro-fuzzy systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 212–219. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Cpałka, K., Rutkowski, L.: Flexible Takagi Sugeno fuzzy systems. In: Proceedings of the International Joint Conference on Neural Networks, IJCNN 2005, Montreal, pp. 1764–1769 (2005)

    Google Scholar 

  5. Cpałka, K.: On evolutionary designing and learning of flexible neuro-fuzzy structures for nonlinear classification. Nonlinear Analysis Series A: Theory, Methods and Applications 71(12), e1659–e1672 (2009)

    Google Scholar 

  6. Ke, Y., Sukthankar, R.: PCA-SIFT: A More Distinctive Representation for Local Image Descriptors. In: Computer Vision and Pattern Recognition (2004)

    Google Scholar 

  7. Liu, Y., Zhang, D., Lu, G., Ma, W.-Y.: Asurvey of content-based image retrieval with high-level semantics. The Journal of The Pattern Recognition 40, 262–282 (2007)

    Article  MATH  Google Scholar 

  8. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, vol. 2, pp. 1150–1157, doi:10.1109/ICCV.1999

    Google Scholar 

  9. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int’l J. Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  10. Korytkowski, M., Rutkowski, L., Scherer, R.: From Ensemble of Fuzzy Classifiers to Single Fuzzy Rule Base Classifier. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 265–272. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Nowicki, R., Rutkowski, L.: Soft Techniques for Bayesian Classification. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing. Advances in Soft Computing, pp. s.537–s.544. Springer Physica-Verlag (2003)

    Google Scholar 

  12. Ogiela, L., Tadeusiewicz, R., Ogiela, M.R.: Cognitive Computing in Intelligent Medical Pattern Recognition Systems. In: Huang, D.-S., Li, K., Irwin, G.W. (eds.) ICIC. LNICST, vol. 344, pp. 851–856. Springer, Heidelberg (2006)

    Google Scholar 

  13. Ogiela, M.R., Tadeusiewicz, R.: Syntactic pattern recognition for X-ray diagnosis of pancreatic cancer. IEEE Engineering in Medicine and Biology Magazine 19(6), 94–105 (2000)

    Article  Google Scholar 

  14. Ogiela, M.R., Tadeusiewicz, R., Ogiela, L.: Intelligent Semantic Information Retrieval in Medical Pattern Cognitive Analysis. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3483, pp. 852–857. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Schapire, R.E.: A Brief Introduction to Boosting. In: Conference on Artificial Intelligence, pp. 1401–1406 (1999)

    Google Scholar 

  16. Starczewski, J.T.: On defuzzification of interval type-2 fuzzy sets. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 333–340. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Tieu, K., Viola, P.: Boosting Image Retrieval. International Journal of Computer Vision 56(1/2), 17–36 (2004)

    Article  Google Scholar 

  18. Tuytelaars, T., Mikolajczyk, K.: Local Invariant Feature Detectors: A Survey. In: Foundation and Trends in Computer Graphics and Vision, pp. 177–280 (2008)

    Google Scholar 

  19. Wang, J.Z., Li, J., Wiederhold, G.: SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture Libraries. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 23(9), 947–963 (2001)

    Article  Google Scholar 

  20. Zhang, W., Yu, B., Zelinsky, G., Samaras, D.: Object class recognition using multiple layer boosting with heterogenous features. In: Proc. CVPR, pp. 323–330 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gabryel, M., Korytkowski, M., Scherer, R., Rutkowski, L. (2013). Object Detection by Simple Fuzzy Classifiers Generated by Boosting. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2013. Lecture Notes in Computer Science(), vol 7894. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38658-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38658-9_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38657-2

  • Online ISBN: 978-3-642-38658-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics