Abstract
Finding key points based on SURF and SIFT and size of their vector reduction is a classical approach for object recognition systems. In this paper we present a new framework for object recognition based on generating simple fuzzy classifiers using key points and boosting meta learning to distinguish between one known class and other classes. We tested proposed approach on a known image dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: European Conference in Computer Vision, pp. 404–417 (2006)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). International Journal of Computer Vision and Image Understanding (CVIU) 110(3), 346–359 (2008)
Cpałka, K.: A method for designing flexible neuro-fuzzy systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 212–219. Springer, Heidelberg (2006)
Cpałka, K., Rutkowski, L.: Flexible Takagi Sugeno fuzzy systems. In: Proceedings of the International Joint Conference on Neural Networks, IJCNN 2005, Montreal, pp. 1764–1769 (2005)
Cpałka, K.: On evolutionary designing and learning of flexible neuro-fuzzy structures for nonlinear classification. Nonlinear Analysis Series A: Theory, Methods and Applications 71(12), e1659–e1672 (2009)
Ke, Y., Sukthankar, R.: PCA-SIFT: A More Distinctive Representation for Local Image Descriptors. In: Computer Vision and Pattern Recognition (2004)
Liu, Y., Zhang, D., Lu, G., Ma, W.-Y.: Asurvey of content-based image retrieval with high-level semantics. The Journal of The Pattern Recognition 40, 262–282 (2007)
Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, vol. 2, pp. 1150–1157, doi:10.1109/ICCV.1999
Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int’l J. Computer Vision 60(2), 91–110 (2004)
Korytkowski, M., Rutkowski, L., Scherer, R.: From Ensemble of Fuzzy Classifiers to Single Fuzzy Rule Base Classifier. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 265–272. Springer, Heidelberg (2008)
Nowicki, R., Rutkowski, L.: Soft Techniques for Bayesian Classification. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing. Advances in Soft Computing, pp. s.537–s.544. Springer Physica-Verlag (2003)
Ogiela, L., Tadeusiewicz, R., Ogiela, M.R.: Cognitive Computing in Intelligent Medical Pattern Recognition Systems. In: Huang, D.-S., Li, K., Irwin, G.W. (eds.) ICIC. LNICST, vol. 344, pp. 851–856. Springer, Heidelberg (2006)
Ogiela, M.R., Tadeusiewicz, R.: Syntactic pattern recognition for X-ray diagnosis of pancreatic cancer. IEEE Engineering in Medicine and Biology Magazine 19(6), 94–105 (2000)
Ogiela, M.R., Tadeusiewicz, R., Ogiela, L.: Intelligent Semantic Information Retrieval in Medical Pattern Cognitive Analysis. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3483, pp. 852–857. Springer, Heidelberg (2005)
Schapire, R.E.: A Brief Introduction to Boosting. In: Conference on Artificial Intelligence, pp. 1401–1406 (1999)
Starczewski, J.T.: On defuzzification of interval type-2 fuzzy sets. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 333–340. Springer, Heidelberg (2008)
Tieu, K., Viola, P.: Boosting Image Retrieval. International Journal of Computer Vision 56(1/2), 17–36 (2004)
Tuytelaars, T., Mikolajczyk, K.: Local Invariant Feature Detectors: A Survey. In: Foundation and Trends in Computer Graphics and Vision, pp. 177–280 (2008)
Wang, J.Z., Li, J., Wiederhold, G.: SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture Libraries. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 23(9), 947–963 (2001)
Zhang, W., Yu, B., Zelinsky, G., Samaras, D.: Object class recognition using multiple layer boosting with heterogenous features. In: Proc. CVPR, pp. 323–330 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gabryel, M., Korytkowski, M., Scherer, R., Rutkowski, L. (2013). Object Detection by Simple Fuzzy Classifiers Generated by Boosting. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2013. Lecture Notes in Computer Science(), vol 7894. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38658-9_49
Download citation
DOI: https://doi.org/10.1007/978-3-642-38658-9_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38657-2
Online ISBN: 978-3-642-38658-9
eBook Packages: Computer ScienceComputer Science (R0)