Skip to main content

Managing Communication for People with Amyotrophic Lateral Sclerosis: The Role of the Brain-Computer Interface

  • Chapter
  • First Online:
Rare Diseases in the Age of Health 2.0

Abstract

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative neurological condition categorized as an orphan disease and at present the primary treatment is managing symptoms. It leads to severe paralysis, resulting in the need for the patient to use assistive technologies to support them in their daily activities. When the condition is severe, mainstream technologies may no longer offer the support required, due to the need for reliable residual movement. Brain computer interfaces (BCI) have the potential to become a powerful assistive technology for some individuals with the most severe of neuromuscular disorders. With only ‘thought’ as an input medium the user could harness control and communication. Undoubtedly, the availability of such technology could have a major positive impact on the life of a patient with ALS, supporting their inclusion in the world and contact with people around them. However, despite decades of research and development, BCIs are still not commonplace. Many recent advances have been made but some factors still prevent widespread deployment of BCI. This chapter will introduce the background of BCI and provide a short discussion about the problems associated with BCI technology, balanced with thoughts about its potential, challenges and hopes for the future.

Leave no stone unturned

EURIPIDES, Heraclidae

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    BCIs can also use other physiological properties such as blood flow (Andersson et al. 2010), but these are less common and not considered in this chapter.

References

  • Allison B, Graimann B, Gräser A. Why use a BCI if you are healthy. ACE Workshop-Brain-Computer Interfaces and Games, 2007. pp. 7–11.

    Google Scholar 

  • Allison B, Luth T, Valbuena D, Teymourian A, Volosyak I, Graser A. BCI demographics: How many (and what kinds of) people can use an SSVEP BCI? IEEE Trans. Neural Sys. Rehabil. Eng. 2010;18(2):107–16.

    Article  Google Scholar 

  • Allison BZ. Trends in BCI research: Progress today, backlash tomorrow? ACM Crossroads. 2011;18(1):18–22.

    Article  MathSciNet  Google Scholar 

  • Allison BZ, Leeb R, Brunner C, Muller-Putz GR, Bauernfeind G, Kelly JW, et al. Toward smarter BCIs: Extending BCIs through hybridization and intelligent control. J Neural Eng. 2012;9(1):013001.

    Article  Google Scholar 

  • Allison BZ, Dunne S, Leeb R, Millan J, Nijholt A. Recent and upcoming BCI progress: Overview, analysis, and recommendations. In: Allison BZ, Dunne S, Leeb R, Millan J, Nijholt A, editors. Towards practical BCIs: bridging the gap from research to real-world applications. Berlin: Springer; 2013. pp. 1–13

    Google Scholar 

  • ALSA. ALS association. What is ALS? http://www.alsa.org/about-als/what-is-als.html. (2013a). Accessed Feb 2013.

  • ALSA. ALS association. Facts you should know. http://www.alsa.org/about-als/facts-you-should-know.html. (2013b). Accessed Feb 2013.

  • Andersson P, Ramsey NF, Pluim JP, Viergever M.A. BCI control using 4 direction spatial visual attention and real-time fMRI at 7T. In Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE. 2010; pp. 4221–4225.

    Google Scholar 

  • Babiloni F, Cincotti F, Marciani M, Salinari S, Astolfi L, Aloise F, et al. On the use of brain-computer interfaces outside scientific laboratories: Toward an application in domotic environments. Int Rev Neurobiol. 2009;86:133–46.

    Article  Google Scholar 

  • Birbaumer N. Breaking the silence: Brain–computer interfaces (BCI) for communication and motor control. Psychophysiology. 2006;43(6):517–32.

    Article  Google Scholar 

  • Birbaumer N, Cohen LG. Brain-computer interfaces: communication and restoration of movement in paralysis. J Physiol. 2007;579:621–36.

    Article  Google Scholar 

  • Birbaumer N, Piccione F, Silvoni S, Wildgruber M. (2012). Ideomotor silence: the case of complete paralysis and brain–computer interfaces (BCI). Psychol. Res. 2012;1–9.

    Google Scholar 

  • Blain-Moraes S, Schaff R, Gruis KL, Huggins JE, Wren PA. Barriers to and mediators of brain–computer interface user acceptance: Focus group findings. Ergonomics. 2012;55(5):516–25.

    Article  Google Scholar 

  • BRAIN. BCIs with rapid automated interfaces for nonexperts (BRAIN) http://www.brain-project.org. (2013). Last accessed Jan 2013.

  • Brainable Autonomy and social inclusion through mixed reality Brain-Computer Interfaces: Connecting the disabled to their physical and social world, http://www.brainable.org/en/Pages/Home.aspx. (2013). Last accessed Jan 2013.

  • Brain Communication. Brain Communication Foundation, http://www.braincommunication.org/. (2013). Last accessed Jan 2013.

  • BrainGate. BrainGate amazes again: Paralyzed woman moves thought-controlled robotic arm, http://neurogadget.com/2012/05/19/braingate-amazes-again-paralyzed-woman-moves-thought-controlled-robotic-arm-video/4370. (2012). Neurogadget, 19 May 2012.

  • BrainGate. BrainGate™ http://www.braingate.com/. (2013). Last accessed Jan 2013.

  • Brunner C, Allison BZ, Altstatter C, Neuper C. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals. J Neural Eng. 2011a;8(2):025010.

    Article  Google Scholar 

  • Brunner C, Andreoni G, Bianchi L, Blankertz B, Breitweiser C, Kanoh S, Kothe C, Lecuyer A, Makeig S, Mellinger J, Perego P, Renard Y, Schalk G, Susila IP, Venthur B, Müller-Putz G. BCI Software Platforms. In: Allison BZ, Dunne S, Leeb R, Millan J, Nijholt A. editors. Toward practical BCIs: Bridging the gap from research to real-world applications. Berlin: Springer; 2013. pp. 303–331.

    Google Scholar 

  • Brunner P, Bianchi L, Guger C, Cincotti F, Schalk G. Current trends in hardware and software for brain–computer interfaces (BCIs). J Neural Eng. 2011b;8:025001.

    Article  Google Scholar 

  • Bauby JD. The diving bell and the butterfly: A memoir of life in death. Vintage (1998).

    Google Scholar 

  • Calvo A, Chiò A, Castellina E, Corno F, Farinetti L, Ghiglione P, Vignola A. Eye tracking impact on quality-of-life of ALS patients. Computers Helping People with Special Needs, 2008. pp. 70–77.

    Google Scholar 

  • De Laar B, Guerkoek H, Plass-Oude Bas D, Nijber F, Nijholt, A. Brain-computer interfaces and user experience evaluation. In: Allison BZ, Dunne S, Leeb R, Millan J, Nijholt A. Towards Practical BCIs: Bridging the Gap from Research to Real-World Applications, Berlin: Springer; 2013. pp. 223–237.

    Google Scholar 

  • Ekandem JI, Davis TA, Alvarez I, James MT, Gilbert JE. Evaluating the ergonomics of BCI devices for research and experimentation. Ergonomics. 2012;55(5):592–8.

    Article  Google Scholar 

  • Emotiv. Emotiv company website. http://www.emotiv.com/. (2013a). Accessed Feb 2013.

  • Emotiv. Emotiv company website, EEG features. (2013b). http://www.emotiv.com/eeg/features.php. Accessed Feb 2013.

  • Ensrud E. Can computers read your mind? Neurology. 2005;64:E30. doi:10.1212/WNL.64.10.E30.

    Article  Google Scholar 

  • Future BNCI. Future Directions in BNCI Research, http://future-bnci.org/ EU funded: http://cordis.europa.eu/search/index.cfm?fuseaction=proj.document&PJ_RCN=11158040. (2013). Last accessed Jan 2013.

  • GARD. Genetic and rare diseases information center. (2013). http://rarediseases.info.nih.gov/GARD/Condition/5786/Amyotrophic_lateral_sclerosis.aspx. Accessed Feb 2013.

  • Gargiulo G, Calvo RA, Bifulco P, Cesarelli M, Jin C, Mohamed A, van Schaik A. A new EEG recording system for passive dry electrodes. Clin Neurophysiol. 2010;121(5):686–93.

    Article  Google Scholar 

  • Gehrig. Lou Gehrig Biography web page. (2013). http://www.biography.com/people/lou-gehrig-9308266. Accessed Feb 2013.

  • Gomez-Rodriguez M, Grosse-Wentrup M, Hill J, Gharabaghi A, Scholkopf B, Peters J. Towards brain-robot interfaces in stroke rehabilitation. IEEE Int Conf Rehabil Robot. 2011;2011:5975385.

    Google Scholar 

  • Graimann B, Allison BZ, Pfurtscheller G. A gentle introduction to brain—computer interface (BCI) systems, In: Graimann B, Allison BZ, Pfurtscheller G editors. Brain-Computer interfaces: revolutionizing Human-Computer Interaction. Berlin: Springer; 2010. pp. 1–28.

    Google Scholar 

  • Guger C, Daban S, Sellers E, Holzner C, Krausz G, Carabalona R, et al. How many people are able to control a P300-based brain? computer interface (BCI)? Neurosci Lett. 2009;462(1):94–8.

    Article  Google Scholar 

  • Guger C, Allison BZ, Großwindhager B, Prückl R, Hintermüller C, Kapeller C, Bruckner M, Krausz G, Edlinger G. How many people could use an SSVEP BCI? Front Neurosci. 2012;6:169.

    Google Scholar 

  • Guger C, Krausz G, Allison BZ, Edlinger G. Comparison of dry and gel based electrodes for P300 brain–computer interfaces. Front Neurosci. (2012b):6.

    Google Scholar 

  • Hayashi H, Oppenheimer EA. ALS patients on TPPV: totally locked-in state, neurologic findings and ethical implications. Neurology. 2003;61(1):135–7.

    Article  Google Scholar 

  • Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012;485(7398):372–5. doi:10.1038/nature11076.

    Article  Google Scholar 

  • Huggins JE, Wren PA, Gruis KL. What would brain-computer interface users want? Opinions and priorities of potential users with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis. 2011;12(5):318–24.

    Article  Google Scholar 

  • Intendix. 2013. http://www.intendix.com/. Accessed Jan 2013.

  • Intendix. IntendiX®SPELLER Video. 2013a. http://www.youtube.com/watch?v=NlUPFpZswJk. Accessed Jan 2013.

  • Indendix. Domestic Control Video. 2013b. http://www.youtube.com/watch?v=bFwNi_M32cE&NR=1. Accessed Jan 2013.

  • Indendix. Painting by thoughts. 2013c. http://gtecmedical.wordpress.com/2012/10/22/paint-by-thoughts-only/. Accessed Jan 2013.

  • Intendix. Gaming using BCI. 2013d. http://gtecmedical.wordpress.com/2012/03/20/intendix-soci-breakthrough-in-gaming/. Accessed Jan 2013.

  • Jones M, Grogg K, Anschutz J, Fierman R. A sip-and-puff wireless remote control for the Apple iPod. Assistive Technol. 2008;20(2):107–10.

    Article  Google Scholar 

  • Kübler A, Nijboer F, Mellinger J, Vaughan TM, Pawelzik H, Schalk G, McFarland DJ, Birbaumer N, Wolpaw JR. Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology. 2005;64:1775-7.

    Google Scholar 

  • Mak JN, McFarland DJ, Vaughan TM, McCane LM, Tsui PZ, Zeitlin DJ, et al. EEG correlates of P300-based brain–computer interface (BCI) performance in people with amyotrophic lateral sclerosis. J Neural Eng. 2012;9(2):026014.

    Article  Google Scholar 

  • Mason SG, Bashashati A, Fatourechi M, Navarro KF, Birch GE. A comprehensive survey of brain interface technology designs. Ann Biomed Eng. 2007;35(2):137–69.

    Article  Google Scholar 

  • Mattia D, Picchiori F, Molinari M, Rupp R. Brain computer interface for hand motor function restoration and rehabilitation. In: Allison BZ, Dunne S, Leeb R, Millan J, Nijholt A editors. Towards Practical BCIs: Bridging the Gap from Research to Real-World Applications, Berlin: Springer; 2013. pp. 131–153.

    Google Scholar 

  • McCullagh P, Ware M, McRoberts A, Lightbody G, Mulvenna M, McAllister G et al. Towards standardized user and application interfaces for the brain computer interface. Universal Access in Human-Computer Interaction. Users Diversity. (2011):573–582.

    Google Scholar 

  • McFarland DJ, Wolpaw JR. Brain-computer interface operation of robotic and prosthetic devices. Computer. 2008;41(10):52–6.

    Article  Google Scholar 

  • Mihajlovic V, Molina GG, Peuscher J. To what extend can dry and water-based EEG electrodes replace conductive gel ones? A steady state visual evoked potential brain-computer interface study,” In: Proceeding of the 5th International Joint Conference on Biomedical Engineering System and Technologies (BIOSTEC 2012). (2012).

    Google Scholar 

  • Millán JR, Rupp R, Muller-Putz GR, Murray-Smith R, Giugliemma C, Tangermann M, et al. Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges. Front Neurosci. 2010;4:161.

    Google Scholar 

  • Millán JR, Carmena JM. Invasive or noninvasive: understanding brain-machine interface technology. IEEE Eng Med Biol Mag. 2010;29(1):16–22.

    Article  Google Scholar 

  • MindWave. MindWave Mobile from Neurosky. http://www.neurosky.com/Products/MindWaveMobile.aspx. 2013. Accessed Feb 2013.

  • Miranda ER, Magee WL, Wilson JJ, Eaton J, Palaniappan R. Brain-computer music interfacing (BCMI) from basic research to the real world of special needs. Music Med. 2011;3(3):134–40.

    Article  Google Scholar 

  • Molina GG, Mihajlovic V. Spatial filters to detect steady-state visual evoked potentials elicited by high frequency stimulation: BCI application. Biomedizinische Technik/Biomed Eng. 2010;55(3):173–82.

    Article  Google Scholar 

  • Müller-Putz GR, Leeb R, Millán JDR, Horki P, Kreilinger A, Bauernfeind G, Scherer R. Principles of hybrid Brain–Computer interfaces. Towards Pract Brain-Comput Interfaces. (2012):355–373.

    Google Scholar 

  • Mulvenna M, Lightbody G, Thomson E, McCullagh P, Ware M, Martin S. Realistic expectations with brain computer interfaces. J Assistive Technol. (2012);6(4):233–244.

    Google Scholar 

  • Münßinger JI, Halder S, Kleih SC, Furdea A, Raco V, Hoesle A, Kübler A. Brain painting: first evaluation of a new brain–computer interface application with ALS-patients and healthy volunteers. Front Neurosci. (2010):4.

    Google Scholar 

  • Nam CS, Schalk G, Jackson MM. Current trends in Brain–Computer interface (BCI) research and development. Intl J Human–Comput Interact. 2010;27(1):1–4.

    Article  Google Scholar 

  • Neuper C, Müller GR, Kübler A, Birbaumer N, Pfurtscheller G. Clinical application of an EEG-based brain–computer interface: a case study in a patient with severe motor impairment. Clin Neurophysiol. 2003;114(3):399–409.

    Article  Google Scholar 

  • Nijboer F, Furdea A, Gunst I, Mellinger J, McFarland DJ, Birbaumer N, Kübler A. An auditory brain–computer interface (BCI). J Neurosci Methods. 2008;167(1):43–50.

    Article  Google Scholar 

  • Nijboer F, Broermann U. Brain–computer interfaces for communication and control in locked-in patients. Brain-Comput Interfaces. (2010):185–201.

    Google Scholar 

  • Nijboer F, Clausen J, Allison BZ, Haselager P. The Asilomar survey: researchers’ opinions on ethical issues related to brain-computer interfacing. Neuroethics. 2011:1–38.

    Google Scholar 

  • Nijholt A. BCI for games: a ‘state of the art’ survey. Entertainment Comput ICEC. 2009;2008:225–8.

    Google Scholar 

  • Orphanet. Orphanet, the portal for rare diseases and orphan drugs. http://www.orpha.net/consor/cgi-bin/index.php?lng=EN. 2013. Accessed Nov 2013.

  • Ortner R, Irimia DC, Scharinger J, Guger C. A motor imagery based brain-computer interface for stroke rehabilitation. Stud Health Technol Inform. 2012;181:319–23.

    Google Scholar 

  • Ourand PR. FYI brain computer interface technology, ALS association, October 2004. Reviewed and Updated by Melody Moore, PhD, Feb 2005. http://www.alsa.org/als-care/resources/publications-videos/factsheets/brain-computer-interface.html. 2004. Accessed Jan 2013.

  • Patient. Motor neurone disease. http://www.patient.co.uk/health/Motor-Neurone-Disease.htm. 2013. Accessed Jan 2013.

  • Pfurtscheller G, Muller-Putz GR, Scherer R, Neuper C. Rehabilitation with brain-computer interface systems. Computer. 2008;41(10):58–65.

    Article  Google Scholar 

  • Pfurtscheller G, Solis-Escalante T, Ortner R, Linortner P, Muller-Putz GR. Self-paced operation of an SSVEP-based orthosis with and without an imagery-based “brain switch:” a feasibility study towards a hybrid BCI. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society. 2010;18(4); 409–414.

    Google Scholar 

  • Sellers EW, Vaughan TM, Wolpaw JR. A brain-computer interface for long-term independent home use. Amyotrophic Lateral Scler. 2010;11(5):449.

    Article  Google Scholar 

  • Sugiarto I, Allison B, Graser A. Optimization strategy for SSVEP-based BCI in spelling program application. Computer Engineering and Technology, 2009. ICCET’09. International Conference on, 1. 2009. pp. 223–226.

    Google Scholar 

  • Tangermann M, Krauledat M, Grzeska K, Sagebaum M, Blankertz B, Vidaurre C, et al. Playing pinball with non-invasive BCI. Adv Neural Inf Process Sys. 2009;21:1641–8.

    Google Scholar 

  • Thomas R. Diving Bell movie’s fly-away success, BBC News Channel, http://news.bbc.co.uk/1/hi/entertainment/7230051.stm. (2008). Accessed Feb 2013.

  • TOBI. Tools for brain-computer interaction. 2013. http://www.tobi-project.org/. Last accessed Jan 2013.

  • Vaughan TM, McFarland DJ, Schalk G, Sarnacki WA, Krusienski DJ, Sellers EW, Wolpaw JR. The wadsworth BCI research and development program: at home with BCI. Neural Systems and Rehabilitation Engineering, IEEE Transactions on. 2006; 14(2):229–233.

    Google Scholar 

  • Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB. Cortical control of a prosthetic arm for self-feeding. Nature. 2008;453(7198):1098–101. Epub 2008 May 28.

    Google Scholar 

  • Volosyak I, Valbuena D, Malechka T, Peuscher J, Gräser A. Brain–computer interface using water-based electrodes. J Neural Eng. 2010;7(6):066007.

    Article  Google Scholar 

  • Wadsworth. The wadsworth center brain-computer interface system. 2013. http://www.wadsworth.org/bci/faq.html. Accessed Jan 2013.

  • Ware M, McCullagh P, Mulvenna M, Nugent C, McAllister H, Lightbody G. A universal command structure for multiple domotic device interactions. TOBI Workshop. 2010; p. 41.

    Google Scholar 

  • Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain–computer interfaces for communication and control. Clin Neurophysiol. 2002;113(6):767–91.

    Article  Google Scholar 

  • Wolpaw J, Wolpaw EW, editors. Brain-computer interfaces: principles and practice. USA: Oxford University Press; 2012.

    Google Scholar 

  • Zander TO, Kothe C. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general. J Neural Eng. 2011;8(2):025005.

    Article  Google Scholar 

  • Zhu D, Bieger J, Molina GG, Aarts RM. A survey of stimulation methods used in SSVEP-based BCIs. Comput Intell Neurosci. 2010;2010:1.

    Article  Google Scholar 

  • Zhu H, Sun Y, Zeng J, Sun H. Mirror neural training induced by virtual reality in brain–computer interfaces may provide a promising approach for the autism therapy. Med Hypotheses. 2011;76(5):646–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaye Lightbody .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lightbody, G., Allison, B., McCullagh, P. (2014). Managing Communication for People with Amyotrophic Lateral Sclerosis: The Role of the Brain-Computer Interface. In: Bali, R., Bos, L., Gibbons, M., Ibell, S. (eds) Rare Diseases in the Age of Health 2.0. Communications in Medical and Care Compunetics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38643-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38643-5_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38642-8

  • Online ISBN: 978-3-642-38643-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics