Emotional Stress Detection in Contradictory versus Self-consistent Speech by Means of Voice Biometrical Signature

  • Victoria Rodellar-Biarge
  • Daniel Palacios-Alonso
  • Elena Bartolomé
  • Pedro Gómez-Vilda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7930)


Most of the parameters proposed for the characterization of the emotion in speech concentrate their attention on phonetic and prosodic features. Our approach goes beyond by trying to relate the biometrical signature of voice with a possible neural activity that might generate voice production. The present study affords emotional differentiation in speech from the behavior of the biomechanical stiffness and cyclicality estimates, indicators of tremor. The emotion under study is the stress produced when a speaker has to defend an idea opposite to his/her thoughts or feelings and compared when his/her speech is self-consistent. The results presented show that females tend to relax vocal folds and decrease tremor and males tend to show the opposite behavior.


Speaker’s biometry Glottal Signature Emotional Tremor Emotional stress Phonatory biomechanics Parameters Voice Production 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Darwin, C.: The Expression of the Emotions in Man and Animals (1872)Google Scholar
  2. 2.
    Plutchick, R.: The Psychology and Biology of Emotion. Harper Collins Publishers (1994)Google Scholar
  3. 3.
    Gómez, P., Fernández, R., Rodellar, V., Nieto, V., Álvarez, A., Mazaira, L.M., Martínez, R., Godino, J.I.: Glottal Source Biometrical Signature for Voice Pathology Detection. Speech Comm. 51, 759–781 (2009)CrossRefGoogle Scholar
  4. 4.
    Luschei, E.S., Ramig, L.O., Baker, K.L., Smith, M.E.: Discharge characteristics of laryngeal single motor units during phonation in young and older adults and in persons with Parkinson disease. J. Neurophysiol. 81, 2131–2139 (1999)Google Scholar
  5. 5.
    Fant, G.: Acoustic Theory of Speech Production, 2nd edn. Mouton (1970)Google Scholar
  6. 6.
    Story, B., Titze, I.: Voice simulation with a body-cover model of the vocal folds. J. Acoust. Soc. Am. 97(2), 1249–1260 (1995)CrossRefGoogle Scholar
  7. 7.
    Barkmeier, J., Hoffman, H.: Synchrony of laryngeal muscle activity in persons with vocal tremor. Arch. Otolaryngol. Head Neck Surg. 129(3), 313–323 (2003)Google Scholar
  8. 8.
    Pérez, K., Ramig, L., Smith, M., Dromey, C.: The Parkinson larynx: tremor and videostroboscopic findings. J. Voice 10(4), 354–361 (1996)CrossRefGoogle Scholar
  9. 9.
    Deller, J.R., Proakis, J.G., Hansen, J.H.L.: Discrete-Time Processing of Speech Signals. MacMillan Pub. Co., Englewood Cliffs (1993)Google Scholar
  10. 10.
    Rodellar,V., Palacios, D., Bartolomé, E., Gómez, P.: Vocal Fold Stiffness Estimates for Emotion Description in Speech. Proceedings of BIOSIGNALS 2013 – 6th International Conference on Bio-inspired Systems and Signal Processing, pp. 112-119 (2013)Google Scholar
  11. 11.
    Ververidis, D., Kotropoulos, C.: A Review of Emotional Speech Databases. In: Proc. 9th Panhellenic Conference on Informatics (PCI), Thessaloniki, Greece, pp. 560–574 (2003)Google Scholar
  12. 12.
    Ramakrishnan, S.: Recognition of Emotion from Speech: A Review. In: Speech Enhancement, Modeling and Recognition-Algorithms and Applications. InTech (2012)Google Scholar
  13. 13.
    Ververidis, D., Kotsia, I., Kotropoulos, C., Pitas, I.: Multi-modal emotion-related data collection within a virtual earthquake emulator. In: Proc. Inter. Conf. Language Resources and Evaluation (LREC), Morocco (2008)Google Scholar
  14. 14.
    Hasrul, M., Hariharan, M., Sazali, Y.: Human Affective (Emotion) Behavior Analysis using Speech Signals: A Review. In: Proceedings of the 2012 International Conference on Biomedical Engineering, ICoBE (February 2012)Google Scholar
  15. 15.
    Bhutekar, S., Chandak, M.: Designing and Recording Emotional Speech Databases. International Journal of Computer Applications (IJCA): Proceedings on National Conference on Innovative Paradigms in Engineering and Technology (NCIPET 2012) 4, 6–10 (2012)Google Scholar
  16. 16.
    Frank, M.G., Ekman, P.: Appearing truthful generalizes across different deception situations. Journal of Personality and Social Psychology 86, 486–495 (2004)CrossRefGoogle Scholar
  17. 17.
    Arciuli, J., Villar, G., Mallard, D.: Lies, Lies and More Lies. In: 31st Annual Meeting of the Cognitive Science Society (CogSci 2009), pp. 2329–2334 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Victoria Rodellar-Biarge
    • 1
    • 2
  • Daniel Palacios-Alonso
    • 1
    • 2
  • Elena Bartolomé
    • 1
    • 2
  • Pedro Gómez-Vilda
    • 1
    • 2
  1. 1.Grupo de Informática Aplicada al Tratamiento de Señal e Imagen, Neuromorphic Speech Processing Laboratory Centro de Tecnología Biomédica and Facultad de InformáticaUniversidad Politécnica de MadridPozuelo de AlarcónSpain
  2. 2.Madrid Department of Architecture and Technology Systems, Faculty of Computer SciencePolytechnic UniversityMadridSpain

Personalised recommendations