Advertisement

Cochlear Implant: Transcutaneous Transmission Link with OFDM

  • Vicente Garcerán-Hernández
  • Ernesto A. Martínez-Rams
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7930)

Abstract

This paper presents the use of the OFDM (Orthogonal Frequency Division Multiplexing) modulation technique in the design and simulation of a telemetry system for a cochlear implant. Data were processed through the Simulink module of MATLAB TM . High transmission speed and high spectral efficiency were achieved with this design and simulation. Two types of OFDM were studied and compared regarding spectral efficiency and noise immunity, and the superiority of OFDM modulation using the QAM (Quadrature Amplitude Modulation) method was shown over OFDM, which uses the DQPSK (Differential Quadrature Phase Shift Keying) modulation method.

Keywords

Orthogonal Frequency Division Multiplex Cochlear Implant Quadrature Amplitude Modulation Orthogonal Frequency Division Multiplex Signal Telemetry System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mai, S., Zhang, C., Dong, M., Wang, Z.: A cochlear system with implant DSP. In: IEEE International Conference on Acoustis, Speech and Signal Processing V, pp. 125–128 (2006)Google Scholar
  2. 2.
    Wilson, B.S.: Engineering Design of Cochlear Implants. In: Zeng, F.G., Popper, A.N., Fay, R.R. (eds.) Cochlear Implants. Auditory Prostheses and Electric Hearing. Springer (2004)Google Scholar
  3. 3.
    Bhoir, D.V., Panse, M.: Advances in Cochlear Implant Implementation. International Journal of Recent Trends in Engineering 2(8), 57–59 (2009)Google Scholar
  4. 4.
    Naghmouchi, F., Ghorbel, M., Hamida, A.B., Samet, M.: CMOS ASK System Modulation Dedicated to Cochlear Prothesis. In: IEEE First International Sysmposium on Control, Communications and Signal Processing, pp. 267–270 (2004)Google Scholar
  5. 5.
    Zeng, F.G., Rebscher, S., Harrison, W., Sun, X., Feng, H.: Cochlear Implants: System Design, Integration, and Evaluation. IEEE Reviews in Biomedical Engineering 1, 115–142 (2008)CrossRefGoogle Scholar
  6. 6.
    Sawan, M., Hu, Y., Coulombe, J.: Wireless Smart Implants Dedicated to Multichannel Monitoring and Microstimulation. IEEE Circuits & Systems Magazine 5, 21–39 (2005)CrossRefGoogle Scholar
  7. 7.
    Tang, Z., Smith, B., Schild, J.H., Peckham, P.H.: Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator. IEEE Transactions on Biomedical Engineering 42(5), 524–528 (1995)CrossRefGoogle Scholar
  8. 8.
    Ghovanloo, M., Najafi, K.: A Wideband Frequency-Shift Keying Wireless Link for Inductively Powered Biomedical Implants. IEEE Trans. Circuits and Systems I 51(12), 2374–2383 (2004)CrossRefGoogle Scholar
  9. 9.
    Martínez Rams, E.A., Cano Ortiz, S.D., Garcerán Hernández, V.: Cochlear Stimulator: Evaluation and Emulation Platform (2008)Google Scholar
  10. 10.
    Wise, K.D., Anderson, D.J., Hetke, J.F., Kipke, D.R., Najafi, K.: Wireless Implantable Microsystems: High-Density Electronic Interfaces to the Nervous System. In: Proceedings of the IEEE, vol. 92, pp. 76–97 (2004)Google Scholar
  11. 11.
    Yu, H., Najafi, K.: Low-power interface circuits for bio-implantable microsystems, Technical Digest. In: IEEE Int. Conf. Solid-State Circuits, San Francisco CA (2003)Google Scholar
  12. 12.
    Ghovanloo, M., Najafi, K.: A high-rate frequency shift keying demodulator chip for wireless biomedical implants. In: Proceedings of ISCAS 2003, vol. 5, pp. 45–48 (2003)Google Scholar
  13. 13.
    Hu, Y., Sawan, M.: A fully integrated low-power BPSK demodulator for implantable medical devices. IEEE Trans. Circ. Syst. 52, 2552–2562 (2005)CrossRefGoogle Scholar
  14. 14.
    Hannan, M.A., Abbas, S.M., Samad, S.A., Hussain, A.: Modulation Techniques for Biomedical Implanted Devices and Their Challenges. Sensors 12, 297–319 (2012)CrossRefGoogle Scholar
  15. 15.
    Luo, Z., Sonkusale, S.: A Novel BPSK Demodulator for Biological Implants. IEEE Trans. Circuits and Systems-I: Regular Papers 55(6), 1478–1484 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Deng, S., Hu, Y., Sawan, M.: A High Data Rate QPSK Demodulator for Inductively Powered Electronics Implants. In: IEEE International Symposium on Circuits and Systems, pp. 2577–2580 (2006)Google Scholar
  17. 17.
    Kiourti, A., Demosthenous, A.: BER Performance of a BPSK Biomedical Telemetry System under Varying Coupling and Loading Conditions. In: Lin, J. (ed.) MobiHealth 2010. LNICST, vol. 55, pp. 144–150. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Asgarian, F., Sodagar, A.M.: A Low-Power Noncoherent BPSK Demodulator and Clock Recovery Circuit for High-Data-Rate Biomedical Applications. In: 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4840–4843 (2009)Google Scholar
  19. 19.
    Sonkusale, S., Luo, Z.: A Complete Data and Power Telemetry System Utilizing BPSK and LSK Signaling for Biomedical Implants. In: 30th Annual International IEEE EMBS Conference, pp. 3216–3219 (2008)Google Scholar
  20. 20.
    Ackermann, D.M.: High Speed Transcutaneous Optical Telemetry Link. Case Western Reserve University (2007)Google Scholar
  21. 21.
    Neihart, N.M., Harrison, R.R.: A low-power FM transmitter for use in neural recording applications. In: Proc. IEEE Engineering in Medicine and Biology Conf., pp. 2117–2120 (2004)Google Scholar
  22. 22.
    Proakis, J.G.: Digital Communications, 4th edn. McGraw-Hill, Inc., New York (2000)Google Scholar
  23. 23.
    Peterson, L.L., Davie, B.S.: Computer Networks: A Systems Approach, 5th edn. The Morgan Kaufmann Series in Networking (2011)Google Scholar
  24. 24.
    Cimini, L.J.: Analysis and Simulation of a Digital Mobile Channel using Orthogonal Frecuency Divison Multiplexing. IEEE Transactions on Communications 33(7), 665–675 (1985)CrossRefGoogle Scholar
  25. 25.
    Speth, M., Fechtel, S.A., Fock, G., Meyr, H.: Optimum Receiver Design for Wireless Broad-Band Systems Using OFDM. IEEE Transactions on Communications 47(11) (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vicente Garcerán-Hernández
    • 1
  • Ernesto A. Martínez-Rams
    • 2
  1. 1.Antiguo Cuartel de Antiguones, (Campus de la Muralla)Universidad Politécnica de CartagenaCartagenaEspańa
  2. 2.Universidad de OrienteSantiago de CubaCuba

Personalised recommendations