Dealing with Bullying through Genetic Algorithms

  • M. Angélica Pinninghoff
  • Pedro L. Salcedo
  • Ricardo Contreras
  • Andrea Yáñez
  • Eduardo Oportus
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7930)


Aggression in schools is a problem for which there is no a simple solution. On the other side, it is known that a specific configuration in the distribution of students can affect the behavior among them. Based on a previous experience, we propose to apply genetic algorithms in order to deal with the large number of configurations that can arise on these types of problems. Introducing the concept of penalization has shown to be an interesting concept that allows to reach feasible solutions in reduced computing times. Real environments were considered to conduct the experiments. The set of solutions has been analyzed an accepted as a helpful tool to minimize negative interactions in a classroom.


Genetic algorithms Bullying Sociogram 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnes, J.A.: Graph Theory and Social Networks: A Technical Comment on Connectedness and Connectivity. Sociology 3(2) (1969)Google Scholar
  2. 2.
    Brown, R.J.: Group proccess: Dynamics within and between groups. Blackwell, Oxford (1988)Google Scholar
  3. 3.
    Cerezo, F.: El Test Bull-S Instrumento para la evaluación de la agresividad entre escolares. Albor-Cohs, Madrid (2000)Google Scholar
  4. 4.
    Cerezo, F., Calvo, A., y Sánchez, C.: Bullying y estatus social en el grupo aula en una muestra de escolares. In: IV Congreso Internacional de Psicología y Educaci,́ Almería (2004)Google Scholar
  5. 5.
    Cerezo, F.: Violencia y Victimización entre escolares. El Bullying: estrategias de identificación y elementos para la intervención a través del Test Bull-S. Revista Electrónica de Investigación Psicoeducativa. 4(9), 333–352 (2006)Google Scholar
  6. 6.
    Fleishman, E.A.: The measurement of leadership attitudes in industry. Journal of Applied Psychology 37, 153–158 (1953)CrossRefGoogle Scholar
  7. 7.
    Floreano, D., Mattiussi, C.: Bio-Inspired Artificial Intelligence. Theories, Methods, and Technologies. The MIT Press (2008)Google Scholar
  8. 8.
    Gross, J.L., Yellen, J.: Handbook of Graph Theory Discrete Mathematics and Its Applications. CRC Press (2003)Google Scholar
  9. 9.
    Hemphill, J.K.: Leader behavior description. Ohio State Univerity, Personel Research Board, Columbus (1950)Google Scholar
  10. 10.
    Jackson, M.: Social and Economic Networks. Draft. Princeton University Press (2008)Google Scholar
  11. 11.
    Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, D.C (2003)Google Scholar
  12. 12.
    Michalewicz, Z., Fogel, D.: How to Solve it: Modern Heuristics. Springer (2000)Google Scholar
  13. 13.
    Mislove, A., et al.: Measurement and analysis of online social networks. In: Internet Measurement Conference. Proceedings of the 7th ACM SIGCOM Conference on Internet Measurement, San Diego, California (2007)Google Scholar
  14. 14.
    Pedro Salcedo, L., Angélica Pinninghoff, M., Ricardo Contreras, A.: Group formation for minimizing bullying probability. A proposal based on genetic algorithms. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2011, Part II. LNCS, vol. 6687, pp. 148–156. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Stogdill, R.M., Coons, A.E.: Leader behavior: Its description and measurement. Ohio State University, Bureau of Business Research, Columbus (1957)Google Scholar
  16. 16.
    Sutton, J., Smith, P.K.: Bullying as a group process: An adaptation of the participant role approach. Aggressive Behavior 25, 97–111 (1999)CrossRefGoogle Scholar
  17. 17.
    Willging, P.: Técnicas para el análisis y visualización de interacciones en ambientes virtuales. Redes - Revista Hispana Para el Análisis de Redes Sociales 14(6) (Junio 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Angélica Pinninghoff
    • 1
  • Pedro L. Salcedo
    • 2
  • Ricardo Contreras
    • 1
  • Andrea Yáñez
    • 1
  • Eduardo Oportus
    • 1
  1. 1.Department of Computer ScienceUniversity of ConcepciónChile
  2. 2.Research and Educational Informatics DepartmentUniversity of ConcepciónChile

Personalised recommendations