A Neural Network Simulation of Spreading Depression

  • Daniel Castello Paiva
  • Diego Andina
  • Francisco Javier Ropero Peláez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7930)


With the use of a biologically plausible artificial neural network in which connections are modified through Grossberg’s presynaptic learning rule, it is possible to simulate the spreading depression (SD) cortical phenomenon and analyze its behavior depending on different parameters related to neural plasticity and connectivity. The neural network that simulates a simplified cortex is formed by excitatory and inhibitory locally connected neurons. The conditions for the occurrence of SD are analyzed after an external stimulus is applied to the lattice simulating the cortex.


Artificial Neural Networks Computer Simulation Spreading Depression Traveling Wave Neural Plasticity MatLAB 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leão, A.A.P.: Spreading depression of activity in the cerebral cortex. J. Neurophysiol 7, 359–390 (1944)Google Scholar
  2. 2.
    Gorji, A.: Spreading depression: a review of the clinical relevance. Brain Res. Rev. 38, 33–60 (2001)CrossRefGoogle Scholar
  3. 3.
    Martins-Ferreira, H., Nedergaard, M., Nicholson, C.: Perspectives on spreading depression. Brain Res. Rev. 32, 215–234 (2000)CrossRefGoogle Scholar
  4. 4.
    Weimer, M.S., Hanke, W.: Propagation velocity and triggering threshold of retinal spreading depression are not correlated. Exp. Brain Res. 164, 185–193 (2005)CrossRefGoogle Scholar
  5. 5.
    Kager, H., Wadman, W.J., Somjen, G.G.: Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. J. Neurophysiol 512, 495–512 (2000)Google Scholar
  6. 6.
    Dahlem, M.A., Chronicle, E.P.: A computational perspective on migraine aura. Prog. Neurobiol. 74, 351–361 (2004)CrossRefGoogle Scholar
  7. 7.
    Somjen, G.G.: Mechanisms of spreading depression and hypoxic spreading depression like depolarization. Physiol. Rev. 81, 1065–1096 (2001)Google Scholar
  8. 8.
    Shapiro, B.E.: Osmotic forces and gap junctions in spreading depression: a computational model. J. Comput. Neurosci. 10, 99–120 (2001)CrossRefGoogle Scholar
  9. 9.
    Lipton, R.B., Bigal, M.E.: Migraine: epidemiology, impact, and risk factors for progression. Headache 45(suppl. 1), S3–S13 (2005)Google Scholar
  10. 10.
    Lashley, K.: Patterns of cerebral integration indicated by scotomas of migraine. Arch. Neurol. Psychatry 46, 331–339 (1941)CrossRefGoogle Scholar
  11. 11.
    Dahlem, M.A., Muller, S.C.: Self-induced splitting of spiral-shaped spreading depression waves in chicken retina. Exp. Brain Res. 115, 319–324 (1997)CrossRefGoogle Scholar
  12. 12.
    Fernandes-de-Lima, V.M., Kogler, J.E., Bennaton, J., Hanke, W.: Wave onset in central gray matter - its intrinsic optical signal and phase transitions in extracellular polymers. An Acad. Bras. Cien. 73, 351–364 (2001)CrossRefGoogle Scholar
  13. 13.
    Pelaéz, J.R., Piqueira, J.R.C.: Biological clues for up-to-date artificial neurons. In: Andina, D., Phan, D.T. (eds.) Computational Intelligence: for Engineering and Manufacturing, vol. 1, pp. 1–19. Springer, Berlin (2006)Google Scholar
  14. 14.
    Hebb, D.O.: The organization of behavior. Wiley, New York (1949)Google Scholar
  15. 15.
    Brown, T.H., Kairiss, E.W., Keenan, C.L.: Hebbian Synapses: Biophysical Mechanisms and Algorithms. Annual Review in Neurosciences 13, 475–511 (1990)CrossRefGoogle Scholar
  16. 16.
    Grossberg, S.: Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors. Biological Cybernetics 23, 121–134 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Minai, A.A., Levy, W.B.: The Dynamics of Sparse Random Networks. Biological Cybernetics 70(2), 177–187 (1993)zbMATHCrossRefGoogle Scholar
  18. 18.
    Desai, N.: Homeostatic plasticity in the CNS: synaptic and intrinsic forms. Journal of Physiology 97, 391–402 (2003)Google Scholar
  19. 19.
    Pelaéz, J.R., Simóes, M.G.: A Computational Model of Synaptic Metaplasticity. In: Proceedings of the International Joint Conference of Neural Networks, vol. 1, pp. 6–11 (1999)Google Scholar
  20. 20.
    Desai, N.S., Rutherford, L.C., Turrigiano, G.: Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nature Neuroscience 2(6), 515–520 (1999)CrossRefGoogle Scholar
  21. 21.
    Monteiro, L.H.A., Paiva, D.C., Piqueira, J.R.C.: Spreading depression in mainly locally connected cellular automaton. Journal of Biological Systems 14(4), 617–629 (2006)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daniel Castello Paiva
    • 1
  • Diego Andina
    • 2
  • Francisco Javier Ropero Peláez
    • 3
  1. 1.University of São PauloBrazil
  2. 2.Group for Automation in Signal and CommunicationsTechnical University of MadridSpain
  3. 3.Center for Mathematics, Computation and CognitionUFABCBrazil

Personalised recommendations