An Image-Based Measure for Evaluation of Mathematical Expression Recognition

  • Francisco Álvaro
  • Joan-Andreu Sánchez
  • José-Miguel Benedí
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7887)


Mathematical expression recognition is an active research field that is related to document image analysis and typesetting. In this study, we present a novel global performance evaluation measure for mathematical expression recognition based on image matching. Using an image representation for evaluation tries to overcome the representation ambiguity as human beings do. The results of a recent competition were used to perform several experiments in order to analyze the benefits and drawbacks of this measure.


Performance evaluation Image-based modeling Mathematical expression recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Álvaro, F., Sánchez, J.A., Benedí, J.M.: Unbiased evaluation of handwritten mathematical expression recognition. In: Proceedings of ICFHR, Italy, pp. 181–186 (2012)Google Scholar
  2. 2.
    Chan, K.F., Yeung, D.Y.: Error detection, error correction and performance evaluation in on-line mathematical expression recognition. Pattern Recognition 34(8), 1671–1684 (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    Chou, P.A.: Recognition of equations using a two-dimensional stochastic context-free grammar. In: Pearlman, W.A. (ed.) Visual Communications and Image Processing IV. SPIE Proceedings Series, vol. 1199, pp. 852–863 (1989)Google Scholar
  4. 4.
    Garain, U., Chaudhuri, B.B.: A corpus for OCR research on mathematical expressions. Int. Journal on Document Analysis and Recognition 7, 241–259 (2005)CrossRefGoogle Scholar
  5. 5.
    Keysers, D., Deselaers, T., Gollan, C., Ney, H.: Deformation models for image recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence 29(8), 1422–1435 (2007)CrossRefGoogle Scholar
  6. 6.
    Mouchére, H., Viard-Gaudin, C., Garain, U., Kim, D.H., Kim, J.H.: ICFHR 2012 – Competition on Recognition of On-line Mathematical Expressions (CROHME 2012). In: Proceedings of ICFHR, Italy, pp. 807–812 (2012)Google Scholar
  7. 7.
    Otsu, N.: A Threshold Selection Method from Gray-level Histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Sain, K., Dasgupta, A., Garain, U.: EMERS: a tree matching-based performance evaluation of mathematical expression recognition system. International Journal of Document Analysis and Recognition (2010)Google Scholar
  9. 9.
    Toselli, A.H., Juan, A., Vidal, E.: Spontaneous Handwriting Recognition and Classification. In: Proceedings of ICPR, England, UK, pp. 433–436 (2004)Google Scholar
  10. 10.
    Zanibbi, R., Blostein, D., Cordy, J.R.: Recognizing mathematical expressions using tree transformation. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(11), 1–13 (2002)CrossRefGoogle Scholar
  11. 11.
    Zanibbi, R., Pillay, A., Mouchere, H., Viard-Gaudin, C., Blostein, D.: Stroke-based performance metrics for handwritten mathematical expressions. In: Proceedings of ICDAR, pp. 334–338 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Francisco Álvaro
    • 1
  • Joan-Andreu Sánchez
    • 1
  • José-Miguel Benedí
    • 1
  1. 1.Instituto Tecnológico de InformáticaUniversitat Politècnica de ValènciaSpain

Personalised recommendations