Skip to main content

A Total Variation Based Reconstruction Algorithm for 3D Ultrasound

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7887))

Abstract

This paper presents an algorithm for reconstructing a three dimensional image from a set of noisy two dimensional images, corrupted with Rayleigh distributed multiplicative noise, which is the observational model for Ultrasound imaging. The proposed method performs a variable splitting to introduce an auxiliary variable to serve as the argument of the 3D total variation term. Applying the Augmented Lagrangian framework and using an iterative alternating minimization method leads to simpler problems involving TV minimization with a least squares term. The resulting Gauss Seidel scheme is an instance of the Alternating Direction Method of Multipliers (ADMM) method, for which convergence is guaranteed. Experimental results show that the proposed method is faster and achieves a lower mean square error than existing methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afonso, M., Bioucas-Dias, J., Figueiredo, M.: An augmented lagrangian based method for the constrained formulation of imaging inverse problems. IEEE Tr. Im. Proc. 20(3), 681–695 (2011)

    Article  MathSciNet  Google Scholar 

  2. Afonso, M., Sanches, J.: A total variation based denoising algorithm for 3d ultrasound. In: Reconhecimento de Padrões, Portuguese Conference on Pattern Recognition (RecPad 2012), Coimbra, Portugal (2012)

    Google Scholar 

  3. Bioucas-Dias, J., Figueiredo, M.: Multiplicative noise removal using variable splitting and constrained optimization. IEEE Transactions on Image Processing 19(7), 1720–1730 (2010)

    Article  MathSciNet  Google Scholar 

  4. Chambolle, A.: An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20(1), 89–97 (2004)

    MathSciNet  Google Scholar 

  5. Coupé, P., Hellier, P., Azzabou, N., Barillot, C.: 3D freehand ultrasound reconstruction based on probe trajectory. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 597–604. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Durand, S., Fadili, J., Nikolova, M.: Multiplicative noise removal using l1 fidelity on frame coefficients. J. Math. Imaging Vis. 36(3) (2010)

    Google Scholar 

  7. Eckstein, J., Bertsekas, D.: On the DouglasRachford splitting method and the proximal point algorithm for maximal monotone operators. Mathematical Programming 55(3), 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fenster, A., Downey, D.B., Cardinal, H.N.: Three-dimensional ultrasound imaging. Physics in Medicine and Biology 46(5), R67 (2001)

    Article  Google Scholar 

  9. Gobbi, D.G., Peters, T.M.: Interactive intra-operative 3D ultrasound reconstruction and visualization. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002, Part II. LNCS, vol. 2489, pp. 156–163. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Goldstein, T., Osher, S.: The split Bregman method for ℓ1 regularized problems. SIAM Journal on Imaging Sciences 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rohling, R., Gee, A., Berman, L.: A comparison of freehand 3D ultrasound reconstruction techniques. Med. Imag. Analysis 3(4), 339–359 (1999)

    Article  Google Scholar 

  12. Seabra, J., Sanches, J.: Modeling log-compressed ultrasound images for radio frequency signal recovery. In: Engineering in Medicine and Biology Society (2008)

    Google Scholar 

  13. Seabra, J.C.R.: Medical ultrasound b-mode modeling, de-speckling and tissue characterization assessing the atherosclerotic disease. Ph.D. dissertation, Instituto Superior Técnico (May 2011)

    Google Scholar 

  14. Seabra, J., Xavier, J., Sanches, J.: Convex ultrasound image reconstruction with log-euclidean priors. In: IEEE Engineering in Medicine and Biology Society, EMBS 2008, pp. 435–438 (2008)

    Google Scholar 

  15. Solberg, O., Lindseth, F., Torp, H., Blake, R., Nagelhus Hernes, T.: Freehand 3D ultrasound reconstruction algorithms–a review. Ultrasound in Medicine & Biology 33(7), 991–1009 (2007)

    Article  Google Scholar 

  16. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for ℓ1 minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences 1(1), 143–168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yu, C., Zhang, C., Xie, L.: A multiplicative nakagami speckle reduction algorithm for ultrasound images. In: Multidim. Sys. and Sig. Proc., pp. 1–15 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Afonso, M.V., Sanches, J.M.R. (2013). A Total Variation Based Reconstruction Algorithm for 3D Ultrasound. In: Sanches, J.M., Micó, L., Cardoso, J.S. (eds) Pattern Recognition and Image Analysis. IbPRIA 2013. Lecture Notes in Computer Science, vol 7887. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38628-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38628-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38627-5

  • Online ISBN: 978-3-642-38628-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics