Advertisement

Microstructure Study of Ionic Liquids by Spectroscopy

  • Haoran LiEmail author
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 151)

Abstract

The relationship between the structures and properties of the ionic liquids (ILs) is the foundation for designing novel ionic liquids and developing ILs-based applications, which is very important. Spectroscopic methods have been developed as an important tool to study the structures and interactions of the solutions. Recently, spectroscopic methods have played a key role in the study of the structures and the interactions of the ILs or the solutions containing them. Herein, the applications and progress of different spectroscopic methods including IR, Raman, NMR, and ESR methods in the study on the structures and properties of pure ionic liquids and ionic liquids/solvent mixtures are reviewed, indicating the importance of the spectroscopic methods.

Keywords

Ionic liquids Spectroscopy Infrared Raman NMR ESR UV Structure Interaction 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20990221).

References

  1. 1.
    Malacara-Hernandez D (2002) Color vision and colorimetry: theory and applications. SPIE Press, BellinghamGoogle Scholar
  2. 2.
    Katsyuba SA, Dyson PJ, Vandyukova EE et al (2004) Molecular structure, vibrational spectra, and hydrogen bonding of the ionic liquid 1-ethyl-3methyl-1H-imidazolium tetrafluoroborate. Helv Chim Acta 87:2556CrossRefGoogle Scholar
  3. 3.
    Talaty ER, Raja S, Storhaug VJ et al (2004) Raman and infrared spectra and a initio calculations of C2-4MIM imidazolium hexafluorophosphate ionic liquids. J Phys Chem B 108:13177CrossRefGoogle Scholar
  4. 4.
    Heimer NE, Del Sesto RE, Meng ZZ et al (2006) Vibrational spectra of imidazolium tetrafluoroborate ionic liquids. J Mol Liq 124:84CrossRefGoogle Scholar
  5. 5.
    Cammarata L, Kazarian SG, Salter PA et al (2001) Molecular states of water in room temperature ionic liquids. Phys Chem Chem Phys 3:5192CrossRefGoogle Scholar
  6. 6.
    Danten Y, Cabaco MI, Besnard M (2009) Interaction of water highly diluted in 1-alkyl-3-methyl imidazolium ionic liquids with the PF6- and BF4- anions. J Phys Chem A 113:2873CrossRefGoogle Scholar
  7. 7.
    Takamuku T, Kyoshoin Y, Shimomura T et al (2009) Effect of water on structure of hydrophilic imidazolium-based ionic liquid. J Phys Chem B 113:10817CrossRefGoogle Scholar
  8. 8.
    Koddermann T, Wertz C, Heintz A et al (2006) The association of water in ionic liquids: a reliable measure of polarity. Angew Chem Int Edit 45:3697CrossRefGoogle Scholar
  9. 9.
    Katsyuba SA, Zvereva EE, Vidis A et al (2007) Application of density functional theory and vibrational spectroscopy toward the rational design of ionic liquids. J Phys Chem A 111:352CrossRefGoogle Scholar
  10. 10.
    Jeon Y, Sung J, Kim D et al (2008) Structural change of 1-butyl-3-methylimidazolium tetrafluoroborate plus water mixtures studied by infrared vibrational spectroscopy. J Phys Chem B 112:923CrossRefGoogle Scholar
  11. 11.
    Umebayashi Y, Jiang JC, Lin KH et al (2009) Solvation and microscopic properties of ionic liquid/acetonitrile mixtures probed by high-pressure infrared spectroscopy. J Chem Phys 131:234502CrossRefGoogle Scholar
  12. 12.
    Chang HC, Jiang JC, Chang CY et al (2008) Structural organization in aqueous solutions of 1-butyl-3-methylimidazolium halides: a high-pressure infrared spectroscopic study on ionic liquids. J Phys Chem B 112:4351CrossRefGoogle Scholar
  13. 13.
    Chang HC, Jiang JC, Tsai WC et al (2006) Hydrogen bond stabilization in 1,3-dimethylimidazolium methyl sulfate and 1-butyl-3-methylimidazolium hexafluorophosphate probed by high pressure: the role of charge-enhanced C-H center dot center dot center dot O interactions in the room-temperature ionic liquid. J Phys Chem B 110:3302CrossRefGoogle Scholar
  14. 14.
    Umebayashi Y, Jiang JC, Shan YL et al (2009) Structural change of ionic association in ionic liquid/water mixtures: a high-pressure infrared spectroscopic study. J Chem Phys 130:12450Google Scholar
  15. 15.
    Yokozeki A, Kasprzak DJ, Shiflett MB (2007) Thermal effect on C-H stretching vibrations of the imidazolium ring in ionic liquids. Phys Chem Chem Phys 9:5018CrossRefGoogle Scholar
  16. 16.
    Koddermann T, Wertz C, Heintz A et al (2006) Ion-pair formation in the ionic liquid 1-ethyl-3-methylimidazolium bis(triflyl)imide as a function of temperature and concentration. Chemphyschem 7:1944CrossRefGoogle Scholar
  17. 17.
    Zhang LQ, Wang Y, Xu Z et al (2009) Comparison of the blue-shifted C-D stretching vibrations for DMSO-d(6) in imidazolium-based room temperature ionic liquids and in water. J Phys Chem B 113:5978CrossRefGoogle Scholar
  18. 18.
    Wu B, Zhang YM, Wang HP (2009) Insight into the intermolecular interactions in [Bmim]BF4/[Amim]Cl-ethanol-water mixtures by near-infrared spectroscopy. J Phys Chem B 113:12332CrossRefGoogle Scholar
  19. 19.
    Fumino K, Wulf A, Ludwig R (2008) The cation-anion interaction in ionic liquids probed by far-infrared spectroscopy. Angew Chem Int Edit 47:3830CrossRefGoogle Scholar
  20. 20.
    Fumino K, Wulf A, Ludwig R (2009) Hydrogen bonding in protic ionic liquids: reminiscent of water. Angew Chem Int Edit 48:3184CrossRefGoogle Scholar
  21. 21.
    Koddermann T, Fumino K, Ludwig R et al (2009) What far-infrared spectra can contribute to the development of force fields for ionic liquids used in molecular dynamics simulations. Chemphyschem 10:1181CrossRefGoogle Scholar
  22. 22.
    Katayanagi H, Hayashi S, Hamaguchi HO et al (2004) Structure of an ionic liquid, 1-n-butyl-3-methylimidazolium iodide, studied by wide-angle X-ray scattering and Raman spectroscopy. Chem Phys Lett 392:460CrossRefGoogle Scholar
  23. 23.
    Holomb R, Martinelli A, Albinsson I et al (2008) Ionic liquid structure: the conformational isomerism in 1-butyl-3-methyl-imidazolium tetrafluoroborate ([bmim][BF4]). J Raman Spectr 39:793CrossRefGoogle Scholar
  24. 24.
    Berg RW, Deetlefs M, Seddon KR et al (2005) Raman and ab initio studies of simple and binary 1-alkyl-3-methylimidazolium ionic liquids. J Phys Chem B 109:19018CrossRefGoogle Scholar
  25. 25.
    Fujii K, Fujimori T, Takamuku T et al (2006) Conformational equilibrium of bis(trifluoromethanesulfonyl) imide anion of a room-temperature ionic liquid: Raman spectroscopic study and DFT calculations. J Phys Chem B 110:8179CrossRefGoogle Scholar
  26. 26.
    Jeon Y, Sung J, Seo C et al (2008) Structures of ionic liquids with different anions studied by infrared vibration spectroscopy. J Phys Chem B 112:4735CrossRefGoogle Scholar
  27. 27.
    Saha S, Hamaguchi HO (2006) Effect of water on the molecular structure and arrangement of nitrile-functionalized ionic liquids. J Phys Chem B 110:2777CrossRefGoogle Scholar
  28. 28.
    Fazio B, Triolo A, Di Marco G (2008) Local organization of water and its effect on the structural heterogeneities in room-temperature ionic liquid/H2O mixtures. J Raman Spectr 39:233CrossRefGoogle Scholar
  29. 29.
    Sitze MS, Schreiter ER, Patterson EV et al (2001) Ionic liquids based on FeCl3 and FeCl2. Raman scattering and ab initio calculations. Inorg Chem 40:2298CrossRefGoogle Scholar
  30. 30.
    Alves MB, Santos VO, Soares VCD et al (2008) Raman spectroscopy of ionic liquids derived from 1-n-butyl-3-methylimidazolium chloride and niobium chloride or zinc chloride mixtures. J Raman Spectr 39:1388CrossRefGoogle Scholar
  31. 31.
    Castriota M, Caruso T, Agostino RG et al (2005) Raman investigation of the ionic liquid N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide and its mixture with LiN(SO2CF3)2. J Phys Chem A 109:92CrossRefGoogle Scholar
  32. 32.
    Dupont J, Suarez PAZ, De Souza RF et al (2000) C-H-pi interactions in 1-n-butyl-3-methylimidazolium tetraphenylborate molten salt: solid and solution structures. Chem Eur J 6:2377CrossRefGoogle Scholar
  33. 33.
    Katsyuba SA, Griaznova TP, Vidis A et al (2009) Structural studies of the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate in dichloromethane using a combined DFT-NMR spectroscopic approach. J Phys Chem B 113:5046CrossRefGoogle Scholar
  34. 34.
    Zhu X, Wang Y, Li HR (2009) The structural organization in aqueous solutions of ionic liquids. Aiche J 55:198CrossRefGoogle Scholar
  35. 35.
    Remsing RC, Wildin JL, Rapp AL et al (2007) Hydrogen bonds in ionic liquids revisited: 35/37Cl NMR studies of deuterium isotope effects in 1-n-butyl-3-methylimidazolium chloride. J Phys Chem B 111:11619CrossRefGoogle Scholar
  36. 36.
    Remsing RC, Liu ZW, Sergeyev I et al (2008) Solvation and aggregation of N,N′-Dialkylimidazolium ionic liquids: a multinuclear NMR spectroscopy and molecular dynamics simulation study. J Phys Chem B 112:7363CrossRefGoogle Scholar
  37. 37.
    Huang JF, Chen PY, Sun IW et al (2001) NMR evidence of hydrogen bonding in 1-ethyl-3-methylimidazolium-tetrafluoroborate room temperature ionic liquid. Inorg Chim Acta 320:7CrossRefGoogle Scholar
  38. 38.
    Judeinstein P, Iojoiu C, Sanchez JY et al (2008) Proton conducting ionic liquid organization as probed by NMR: self-diffusion coefficients and heteronuclear correlations. J Phys Chem B 112:3680CrossRefGoogle Scholar
  39. 39.
    Rollet AL, Porion P, Vaultier M et al (2007) Anomalous diffusion of water in [BMIM][TFSI] room-temperature ionic liquid. J Phys Chem B 111:11888CrossRefGoogle Scholar
  40. 40.
    Menjoge A, Dixon J, Brennecke JF et al (2009) Influence of water on diffusion in imidazolium-based ionic liquids: a pulsed field gradient NMR study. J Phys Chem B 113:6353CrossRefGoogle Scholar
  41. 41.
    Mele A, Romano G, Giannone M et al (2006) The local structure of ionic liquids: cation-cation NOE interactions and internuclear distances in neat [BMIM][BF4] and [BDMIM]-[BF4]. Angew Chem Int Edit 45:1123CrossRefGoogle Scholar
  42. 42.
    Mele A, Tran CD, Lacerda SHD (2003) The structure of a room-temperature ionic liquid with and without trace amounts of water: the role of C-H center dot center dot center dot O and C-H center dot center dot center dot F interactions in 1-n-butyl-3-methylimidazolium tetrafluoroborate. Angew Chem Int Edit 42:4364CrossRefGoogle Scholar
  43. 43.
    Gutel T, Santini CC, Padua AAH et al (2009) Interaction between the π-system oftoluene and the imidazolium ring of ionic liquids: a combined NMR and molecular simulation study. J Phys Chem B 113:170CrossRefGoogle Scholar
  44. 44.
    Stoesser R, Herrmann W, Zehl A et al (2006) ESR spin probes in ionic liquids. Chemphyschem 7:1106CrossRefGoogle Scholar
  45. 45.
    Barrosse-Antlle LE, Hardacre C, Compton RG (2009) SO2 saturation of the room temperature ionic liquid [C2mim][NTf2] much reduces the activation energy for diffusion. J Phys Chem B 113:1007CrossRefGoogle Scholar
  46. 46.
    Thornazeau C, Olivier-Bourbigou H, Magna L (2003) Determination of an acidic scale in room temperature ionic liquids. J Am Chem Soc 125:5264CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of ChemistryZhejiang UniversityHangzhouP. R. China

Personalised recommendations