Advertisement

Effect of the Structures of Ionic Liquids on Their Physical Chemical Properties

  • Yufeng HuEmail author
  • Xiaoming Peng
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 151)

Abstract

ILs are referred to as “designer solvents” [1], and one of their most important advantages is that their properties can be tuned/controlled by tailoring their structures. To do this, however, it is crucial to assume that ILs are solvents of which the local structural (that is, electronic and steric) features may be correlated with their properties and then deal with the effect of their cation and anion structures in altering the related properties. This is exactly the subject of this chapter. The structural factors of the cations are focused on the status of alkylation of H atoms on the ring and tail groups (the polar/nonpolar character, the chain length and its flexibility, the cyclic and branched structures, and the functional tail group). The anion characters include the symmetry, the size, the charge delocalization either by large volume of the central atom or by the presence of the perfluoroalkyl chain, the chain length and its flexibility, and the functional group. The general patterns through which the examined properties vary on changing the cation and anion structures are explored and the reasons behind the trends are briefly discussed on the basis of the structural effect on the interactions between the counterpart ions.

Keywords

Ionic liquid Interaction Structure H-bonding Nanostructure Thermal property Volume property Transport property 

Notes

Glossary of Abbreviations

Abbreviations

Full Names

IL

Ionic liquid

[Cnmim]+

1-Alkyl-3-methylimidazolium

[2-MeCnmim]+

1-Alkyl-2,3-dimethylimidazolium

[2-MeCnim]+

1-Alkyl-2-methylimidazolium

[C10C10im]+

1,3-Didecylimidazolium

[(C2)2im]+

1,3-Diethylimidazolium

[Cnim]+

1-Alkyllimidazolium

[2-EtC2mim]+

1,2-Diethyl-3-methylimidazolium

[Cn(C2im)2]+

α, ω-Diimidazoliumethylene

[(Cn)2im]+

1,3-Dialkylimidazolium

[C4C2im]+

1-Butyl-3-ethylimidazolium

[i-C3mim]+

1-iso-Propyl-3-methylimidazolium

[CnIsoq]+

N-Alkyl-isoquinolinium

[M5I]+

Pentamethylimidazolium

[P1,n]+

n-Alkyl-N-methylpyrrolidinium

[CnPy]+

1-Alkyl-pyridinium

[Cn-3-MePy]+

1-Alkyl-3-methylpyridinium

[Cn-4-MePy]+

1-Alkyl-4-methylpyridinium

[\( {{\mathrm{ N}}_{{{n_1},{n_2},{n_3},{n_4}}}} \)]+

Quaternary ammonium

[HC ≡ CCH2mim]+

1-(2-Propynyl)-3-methylimidazolium

[CH3CH(OH)CH2mim]+

1-(2-Hydroxypropyl)-3-methylimidazolium

[(CH2)2OHmim]+

1-(2-Hydroxyethyl)-3-methylimidazolium

[CF3CH2mim]+

1-(2,2,2-Trifluoroethyl)-3-methylimidazolium

[NC(CH2)nmim]+

1-Alkylnitrile-3-methylimidazolium

[PEGnmim]+

1-(2-Hydroxy-ethyl) n -3-methylimidazolium

[PEGnC3im]+

1-(2-Hydroxy-ethyl) n -3-propylimidazolium

[CF3(CH2)2mim]+

1-Methyl-3-trifluoropropylimidazolium

[NC(CH2)3Py]+

N-Butyronitrile pyridinium

[Ph(CH2)nmim]+

1-(ω-Phenylalkyl)-3-methylimidazolium

[AuCl4]

Tetrachloroaurate

[AlCl4]

Tetrachloroaluminate

[TA]

Trifluoroacetate

[HB]

Heptafluorobutanoates

[BETI]

Bis(perfluoroethylsulfonyl)imide

[AcO]

Acetate

[Barf]

Tetrakis[p-dimethyl(1H,1H,2H,2H-perfluorooctyl)silylphenyl]-borate

[SbF6]

Hexafluoroantimonate

[AsF6]

Hexafluoroarsenate

[BPh4]

Tetraphenylborate

[NfO]

Nonaflate

[TfO]

Trifluoromethanesulfonate

[Tf2N]

Bis(trifluoromethylsulfonyl)imide

[DCA]

Dicyanamide

[Sac]

Saccharinate

[Me]

Tris(trifluoromethylsulfonyl)methide

[N(CH3SO2)2]

Bis(methane sulfonyl)amide

[CB11H12]

Carborane

[1-CnCB11H11]

1-Alkylcarborane

[(C2F5)3PF3]

Tris(pentafluoroethyl)trifluorophosphate

[(n-C3F7)3PF3]

Tris(heptafluoropropyl)trifluorophosphate

[CnBF3]

Alkyltrifluoroborate

[CH2 = CHBF3]

Vinyltrifluoroborate

[C1F3-BF3]

Trifluoromethyltrifluoroborate

[C2F5-BF3]

Pentafluoroethyltrifluoroborate

[C3F7-BF3]

Heptafluoropropyltrifluoroborate

[C4F9-BF3]

Nonafluorobutyltrifluoroborate

[CF2 = CFBF3]

Trifluorovinyltrifluoroborate

[C(CN)3]

Tricyanomethanide

References

  1. 1.
    Visser AE, Swatloski RP, Reichert WM et al (2001) Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chem Commun 1:135–136Google Scholar
  2. 2.
    Pitzer KS (1980) Electrolytes. From dilute solutions to fused salts. J Am Chem Soc 102:2902–2906Google Scholar
  3. 3.
    Baker SN, Baker GA, Kane MA et al (2001) The cybotactic region surrounding fluorescent probes dissolved in 1-butyl-3-methylimidazolium hexafluorophosphate: effects of temperature and added carbon dioxide. J Phys Chem B 105:9663–9668Google Scholar
  4. 4.
    Bonhôte P, Dias AP, Papageorgiou K et al (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178Google Scholar
  5. 5.
    Geetha S, Trivedi DC (2003) Properties and applications of chloroaluminate as room temperature ionic liquid. Bull Electrochem 19:37–48Google Scholar
  6. 6.
    Dupont J, Spencer J (2004) On the noninnocent nature of 1, 3-dialkylimidazolium ionic liquids. Angew Chem Int Ed 43:5296–5297Google Scholar
  7. 7.
    Chauvin Y, Mussmann L, Olivier H (1996) A novel class of versatile solvents for two-phase catalysis: hydrogenation, isomerization, and hydroformylation of alkenes catalyzed by rhodium complexes in liquid 1,3-dialkylimidazoliurn salts. Angew Chem Int Ed 34:2698–2700Google Scholar
  8. 8.
    Suarez PAZ, Dullius JEL, Einloft S et al (1996) The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes. Polyhedron 15:1217–1219Google Scholar
  9. 9.
    Singh B, Sekhon SS (2005) Polymer electrolytes based on room temperature ionic liquid: 2,3-dimethyl-1-octylimidazolium triflate. J Phys Chem B 109:16539–16543Google Scholar
  10. 10.
    Suarez PAZ, Einloft S, Dullius JEL et al (1998) Synthesis and physical-chemical properties of ionic liquids based on 1-n-butyl-3-methylimidazolium cation. J Chim Phys Chim Biol 95:1626–1639Google Scholar
  11. 11.
    Dzyuba SV, Bartsch RA (2002) Influence of structural variations in 1-alkyl (aralkyl)-3-methylimidazolium hexafluorophosphates and bis(trifluoromethyl sulfonyl) imides on physical properties of the ionic liquids. Chemphyschem 3:161–166Google Scholar
  12. 12.
    Arce A, Rodriguez O, Soto (2004) Experimental determination of liquid-liquid equilibrium using ionic liquids: tert-amyl ethyl ether + ethanol + 1-octyl-3-methylimidazolium chloride system at 298.15 K. J Chem Eng Data 49:514–517Google Scholar
  13. 13.
    Sun J, Forsyth M, MacFarlane DR (1998) Room-temperature molten salts based on the quaternary ammonium ion. J Phys Chem B 102:8858–8864Google Scholar
  14. 14.
    Abbott AP, Capper G, Davies DL et al (2004) Ionic liquids based upon metal halide/substituted quaternary ammonium salt mixtures. Inorg Chem 43:3447–3452Google Scholar
  15. 15.
    Gordon JE, SubbaRao GN (1978) Fused organic salts. 8. Properties of molten straight-chain isomers of tetra-n-pentylammonium salts. J Am Chem Soc 100:7445–7454Google Scholar
  16. 16.
    Tokuda H, Hayamizu K, Ishii K et al (2004) Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J Phys Chem B 108:16593–16600Google Scholar
  17. 17.
    Huddleston JG, Visser AE, Reichert WM et al (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164Google Scholar
  18. 18.
    Fredlake CP, Crosthwaite JM, Hert DG et al (2004) Thermophysical properties of imidazolium-based ionic liquids. J Chem Eng Data 49:954–964Google Scholar
  19. 19.
    Dyson PJ, Laurenczy G, Ohlin CA et al (2003) Determination of hydrogen concentration in ionic liquids and the effect (or lack of) on rates of hydrogenation. Chem Commun 19:2418–2419Google Scholar
  20. 20.
    Gupta OD, Armstrong PD, Shreeve JM (2003) Quaternary trialkyl(polyfluoroalkyl)ammonium salts including liquid iodides. Tetrahedron Lett 44:9367–9370Google Scholar
  21. 21.
    MacFarlane DR, Meakin P, Sun J et al (1999) Pyrrolidinium imides: a new family of molten salts and conductive plastic crystal phases. J Phys Chem B 103:4164–4170Google Scholar
  22. 22.
    Visser AE, Holbrey JD, Rogers RD (2001) Hydrophobic ionic liquids incorporating N-alkylisoquinolinium cations and their utilization in liquid–liquid separations. Chem Commun 23:2484–2485Google Scholar
  23. 23.
    Solvent Innovations Technical Product List (2005) http://www.solventinnovation.com/index–overview.htm. Consulted March 2005
  24. 24.
    Dzyuba SV, Bartsch RA (2002) Expanding the polarity range of ionic liquids. Tetrahedron Lett 43:4657–4659Google Scholar
  25. 25.
    Aggarwal A, Lancaster NL, Sethi AR et al (2002) The role of hydrogen bonding in controlling the selectivity of Diels–Alder reactions in room-temperature ionic liquids. Green Chem 4:517–520Google Scholar
  26. 26.
    Ross J, Xiao J (2003) The effect of hydrogen bonding on allylic alkylation and isomerization reactions in ionic liquids. Chem Eur J 9:4900–4906Google Scholar
  27. 27.
    Chiappe C, Pieraccini DJ (2004) Kinetic study of the addition of trihalides to unsaturated compounds in ionic liquids. Evidence of a remarkable solvent effect in the reaction of ICl2 . Org Chem 69:6059–6064Google Scholar
  28. 28.
    Abdul-Sada AK, Greenway AM, Hitchcock PB et al (1986) Upon the structure of room temperature halogenoaluminate ionic liquids. J Chem Soc Chem Commun 1753–1754Google Scholar
  29. 29.
    Dieter KM, Dymek CJ, Heimer NE et al (1988) Ionic structure and interactions in 1-methyl-3-ethylimidazolium chloride-A1C13 molten salts. J Am Chem Soc 110:2722–2726Google Scholar
  30. 30.
    Avent AG, Chaloner PA, Day MP et al (1994) Evidence for hydrogen bonding in solutions of 1-ethyl-3-methvlimidazolium halides, and its implications for room-temperature halogenoaluminate(III) ionic liquids. J Chem Soc Dalton Trans 3405–3413Google Scholar
  31. 31.
    Fuller J, Carlin RT, De Long HC et al (1994) Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate: model for room temperature molten salts. J Chem Soc Chem Commun 299–300Google Scholar
  32. 32.
    Tait S, Osteryoung RA (1984) Infrared study of ambient-temperature chloroaluminates as a function of melt acidity. Inorg Chem 23:4352–4360Google Scholar
  33. 33.
    Kolle P, Dronskowski R (2004) Hydrogen bonding in the crystal structures of the ionic liquid compounds butyldimethylimidazolium hydrogen sulfate, chloride, and chloroferrate(II, III). Inorg Chem 43:2803–2809Google Scholar
  34. 34.
    Wilkes JS, Zaworotko MJ (1992) Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun 965–967Google Scholar
  35. 35.
    Hayamizu K, Aihara Y, Nakagawa H (2004) Price, ionic conduction and ion diffusion in binary room-temperature ionic liquids composed of [emim][BF4] and LiBF4. J Phys Chem B 108:19527–19532Google Scholar
  36. 36.
    Crowhurst L, Mawdsley PR, Perez-Arlandis JM et al (2003) Solvent–solute interactions in ionic liquids. Phys Chem Chem Phys 5:2790–2794Google Scholar
  37. 37.
    Moret ME, Chaplin AB, Lawrence AK et al (2005) Synthesis and characterization of organometallic ionic liquids and a heterometallic carbene complex containing the chromium tricarbonyl fragment. Organometallics 24:4039–4048Google Scholar
  38. 38.
    Elaiwi A, Hitchcock PB, Seddon KR et al (1995) Hydrogen bonding in imidazolium salts and its implications for ambient-temperature halogenoaluminate(III) ionic liquids. J Chem Soc Dalton Trans 3467–3472Google Scholar
  39. 39.
    Hitchcock PB, Seddon KR, Welton T (1993) Hydrogen-bond acceptor abilities of tetrachlorometalate(II) complexes in ionic liquids. J Chem Soc Dalton Trans 2639–2643Google Scholar
  40. 40.
    Abdul-Sada AK, Al-Juaid S, Greenway AM et al (1990) Upon the hydrogen-bonding ability of the H4 and H5 protons of the imidazolium cation. Struct Chem 1:391–394Google Scholar
  41. 41.
    Amyes TN, Diver ST, Richard JP et al (2004) Formation and stability of N-heterocyclic carbenes in water: the carbon acid pKa of imidazolium cations in aqueous solution. J Am Chem Soc 126:4366–4374Google Scholar
  42. 42.
    Wasserscheid P, Hal R, Bösmann A (2002) 1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfate—an even ‘greener’ ionic liquid. Green Chem 4:400–404Google Scholar
  43. 43.
    Cole AC, Jensen JL, Ntai I et al (2002) Novel Brønsted acidic ionic liquids and their use as dual solvent-catalysts. J Am Chem Soc 124:5962–5963Google Scholar
  44. 44.
    Bondi A (1968) Physical properties of molecular crystals, liquids and glasses. Wiley, New YorkGoogle Scholar
  45. 45.
    Dannenfelser RM, Yalkowsky SH (1996) Estimation of entropy of melting from molecular structure: a non-group contribution method. Ind Eng Chem Res 35:1483–1486Google Scholar
  46. 46.
    Zhao LW, Yalkowsky SH et al (1999) A combined group contribution and molecular geometry approach for predicting melting points of aliphatic compounds. Ind Eng Chem Res 38:3581–3584Google Scholar
  47. 47.
    Branco LC, Crespo JG, Afonso CAM (2002) Studies on the selective transport of organic compounds by using ionic liquids as novel supported liquid membranes. Chem Eur J 8:3865–3871Google Scholar
  48. 48.
    Przybysz K, Drzewinska E, Stanisławska A et al (2005) Ionic liquids and paper. Ind Eng Chem Res 44:4599–4604Google Scholar
  49. 49.
    Branco LC, Crespo JG, Afonso CAM (2002) Highly selective transport of organic compounds by using supported liquid membranes based on ionic liquids. Angew Chem Int Ed 41:2771–2773Google Scholar
  50. 50.
    Dupont J, Suarez PAZ, De Souza RF et al (2000) C-H-π interactions in 1-n-butyl-3-methylimidazolium tetraphenylborate molten salt: solid and solution structures. Chem Eur J 6:2377–2381Google Scholar
  51. 51.
    Muldoon MJ, Gordon CM, Dunkin (2001) IR Investigations of solvent–solute interactions in room temperature ionic liquids using solvatochromic dyes. J Chem Soc Perkin Trans 2:433–435Google Scholar
  52. 52.
    Gozzo FC, Santos LS, Augusti R et al (2004) Gaseous supramolecules of imidazolium ionic liquids: “magic” numbers and intrinsic strengths of hydrogen bonds. Chem Eur J 10:6187–6193Google Scholar
  53. 53.
    Van den Broeke J, Winter F, Deelman BJ et al (2002) A highly fluorous room-temperature ionic liquid exhibiting fluorous biphasic behavior and its use in catalyst recycling. Org Lett 4:3851–3854Google Scholar
  54. 54.
    Berthod A, Ruiz-Angel MJ, Huguet S (2005) Nonmolecular solvents in separation methods: dual nature of room temperature ionic liquids. Anal Chem 77:4071–4080Google Scholar
  55. 55.
    Morrow TI, Maginn EJ (2002) Molecular dynamics study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J Phys Chem B 106:12807–12813Google Scholar
  56. 56.
    Hardacre C, McMath SEJ, Nieuwenhuyzen M et al (2003) Liquid structure of 1, 3-dimethylimidazolium salts. J Phys Condens Matter 15:S159–S166Google Scholar
  57. 57.
    Lee KM, Lee CK, Lin IJB (1997) First example of interdigitated U-shape benzimidazolium ionic liquid crystals. Chem Commun 899–900Google Scholar
  58. 58.
    Mayr H, Ofial AR, Wurthwein EU et al (1997) NMR spectroscopic evidence for the structure of iminium ion pairs. J Am Chem Soc 119:12727–12733Google Scholar
  59. 59.
    Anderson JL, Ding J, Welton T et al (2002) Characterizing ionic liquids on the basis of multiple solvation interactions. J Am Chem Soc 124:14247–14254Google Scholar
  60. 60.
    Ronig B, Pantenburg I, Wesemann L (2002) Meltable stannaborate salts. Eur J Inorg Chem 2:319–322Google Scholar
  61. 61.
    Golding JJ, MacFarlane DR, Spiccia L et al (1998) Weak intermolecular interactions in sulfonamide salts: structure of 1-ethyl-2-methyl-3-benzyl imidazolium bis[(trifluoromethyl)sulfonyl]amide. Chem Commun 1593–1594Google Scholar
  62. 62.
    Koel M (2000) Physical and chemical properties of ionic liquids based on the dialkylimidazolium cation. Proc Estonian Acad Sci Chem 49:145–155Google Scholar
  63. 63.
    Kato T (2002) Self-assembly of phase-segregated liquid crystal structures. Science 295:2414–2418Google Scholar
  64. 64.
    Kishimoto K, Suzawa T, Yokota T et al (2005) Nano-segregated polymeric film exhibiting high ionic conductivities. J Am Chem Soc 127:15618–15623 and references 1–19 cited thereinGoogle Scholar
  65. 65.
    Abdallah DJ, Robertson A, Hsu H-F et al (2000) Smectic liquid-crystalline phases of quaternary group VA (especially phosphonium) salts with three equivalent long n-alkyl chains. How do layered assemblies form in liquid-crystalline and crystalline phases? J Am Chem Soc 122:3053–3062Google Scholar
  66. 66.
    Zhou GP, Zhang Y, Huang XR et al (2008) Catalytic activities of fungal oxidases in hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate-based microemulsion. J Colloids Surf B-Biointerfaces 66:146–149Google Scholar
  67. 67.
    Pott T, Méléard P (2009) New insight into the nanostructure of ionic liquids: a small angle X-ray scattering (SAXS) study on liquid tri-alkyl-methyl-ammonium bis(trifluoromethanesulfonyl)amides and their mixtures. Phys Chem Chem Phys 11:5469–5475Google Scholar
  68. 68.
    Yollner K, Popovitz-Biro R, Lahau M et al (1997) Impact of molecular order in Langmuir–Blodgett films on catalysis. Science 278:2100–2102Google Scholar
  69. 69.
    Jervis H, Raimondi ME, Raja R et al (1999) Templating mesoporous silicates on surfactant ruthenium complexes: a direct approach to heterogeneous catalysts. J Chem Soc Chem Commun 2031–2032Google Scholar
  70. 70.
    Antonietti M, Kuang D, Smarsly B et al (2004) Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew Chem Int Ed 43:4988–4992Google Scholar
  71. 71.
    Ding K, Miao Z, Liu Z et al (2007) Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process. J Am Chem Soc 129:6362–6363Google Scholar
  72. 72.
    Xie Y, Ding K, Liu Z et al (2009) In situ controllable loading of ultrafine noble metal particles on titania. J Am Chem Soc 131:6648–6649Google Scholar
  73. 73.
    Hu Y-F, Liu Z-C, Xu C-M et al (2011) The molecular characteristics dominating the solubility of gases in ionic liquids. Chem Soc Rev 40:3802–3823Google Scholar
  74. 74.
    Rebelo LPN, Canongia Lopes JN, Esperança JMSS et al (2007) Accounting for the unique, doubly dual nature of ionic liquids from a molecular thermodynamic and modeling standpoint. Acc Chem Res 40:1114–1121Google Scholar
  75. 75.
    Shigeto S, Hamaguchi H (2006) Evidence for mesoscopic local structures in ionic liquids: CARS signal spatial distribution of Cnmim[PF6] (n = 4, 6, 8). Chem Phys Lett 427:329–332Google Scholar
  76. 76.
    Triolo A, Russina O, Fazio B et al (2008) Morphology of 1-alkyl-3-methylimidazolium hexafluorophosphate room temperature ionic liquids. Chem Phys Lett 457:362–365Google Scholar
  77. 77.
    Russina O, Triolo A, Gontrani L et al (2009) Morphology and intermolecular dynamics of 1-alkyl-3-methylimidazolium bis{(trifluoromethane)sulfonyl}amide ionic liquids: structural and dynamic evidence of nanoscale segregation. J Phys Condens Matter 21:424121-1– 424121-9Google Scholar
  78. 78.
    Russina O, Beiner M, Pappas C et al (2009) Temperature dependence of the primary relaxation in 1-hexyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide. J Phys Chem B 113:8469–8474Google Scholar
  79. 79.
    Wang Y, Voth GA (2005) Unique spatial heterogeneity in ionic liquids. J Am Chem Soc 127:12192–12193Google Scholar
  80. 80.
    Canongia Lopes JNA, Gomes MFC, Pádua AAH (2006) Nonpolar, polar, and associating solutes in ionic liquids. J Phys Chem B 110:16816–16818Google Scholar
  81. 81.
    Seduraman A, Klähn M, Wu P (2009) Characterization of nano-domains in ionic liquids with molecular simulations. Calphad 33:605–613Google Scholar
  82. 82.
    Wang Y, Voth GA (2006) Tail aggregation and domain diffusion in ionic liquids. J Phys Chem B 110:18601–18608Google Scholar
  83. 83.
    Raju SG, Balasubramanian S (2009) Emergence of nanoscale order in room temperature ionic liquids: simulation of symmetric 1,3-didecylimidazolium hexafluorophosphate. J Mater Chem 19:4343–4347Google Scholar
  84. 84.
    Sarangi SS, Bhargava BL, Balasubramanian S (2009) Nanoclusters of room temperature ionic liquids: a molecular dynamics simulation study. Phys Chem Chem Phys 11:8745–8751Google Scholar
  85. 85.
    Iwata K, Okajima H, Saha S et al (2007) Local structure formation in alkyl-imidazolium-based ionic liquids as revealed by linear and nonlinear Raman spectroscopy. Acc Chem Res 40:1174–1181Google Scholar
  86. 86.
    Xiao D, Hines LG Jr, Li S et al (2009) Effect of cation symmetry and alkyl chain length on the structure and intermolecular dynamics of 1, 3-dialkylimidazolium bis(trifluoromethanesulfonyl)amide ionic liquids. J Phys Chem B 113:6426–6433Google Scholar
  87. 87.
    Margulis C (2004) Computational study of imidazolium-based ionic solvents with alkyl substituents of different lengths. J Mol Phys 102:829–838Google Scholar
  88. 88.
    Shimizu K, Tariq M, Rebelo LPN et al (2010) Binary mixtures of ionic liquids with a common ion revisited: a molecular dynamics simulation study. J Mol Liq 153:52–56Google Scholar
  89. 89.
    Wang YT, Jiang W, Yan TY et al (2007) Understanding ionic liquids through atomistic and coarse-grained molecular dynamics simulations. Acc Chem Res 40:1193–1199Google Scholar
  90. 90.
    Pádua AAH, Costa Gomes MF, Canongia Lopes JNA (2007) Molecular solutes in ionic liquids: a structural perspective. Acc Chem Res 40:1087–1096Google Scholar
  91. 91.
    Hu Z, Margulis CJ (2007) Room-temperature ionic liquids: slow dynamics, viscosity, and the red edge effect. Acc Chem Res 40:1097–1105Google Scholar
  92. 92.
    Pópolo MGD, Kohanoff J, Lynden-bell RM et al (2007) Clusters, liquids, and crystals of dialkyimidazolium salts. A combined perspective from ab initio and classical computer simulations. Acc Chem Res 40:1156–1164Google Scholar
  93. 93.
    Urahata SM, Ribeiro MCC (2004) Structure of ionic liquids of 1-alkyl-3-methylimidazolium cations: a systematic computer simulation study. J Chem Phys 120:1855–1863Google Scholar
  94. 94.
    Canongia Lopes JNA, Pádua AAH (2006) Nanostructural organization in ionic liquids. J Phys Chem B 110:3330–3335Google Scholar
  95. 95.
    Wakasa M, Yago T, Hamasaki A (2009) Nanoscale heterogeneous structure of ionic liquid as revealed by magnetic field effects. J Phys Chem B 113:10559–10561Google Scholar
  96. 96.
    Mandal PK, Sarkar M, Samanta A (2004) Excitation-wavelength-dependent fluorescence behavior of some dipolar molecules in room-temperature ionic liquids. J Phys Chem A 108:9048–9053Google Scholar
  97. 97.
    Santos LMNBF, Lopes JNC, Coutinho JAP et al (2007) Ionic liquids: first direct determination of their cohesive energy. J Am Chem Soc 129:284–285Google Scholar
  98. 98.
    Paul A, Mandal PK, Samanta A (2005) On the optical properties of the imidazolium ionic liquids. J Phys Chem B 109:9148–9153Google Scholar
  99. 99.
    Tokuda H, Hayamizu K, Ishii K et al (2005) Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B 109:6103–6110Google Scholar
  100. 100.
    Hamaguchi H-O, Ozawa R (2005) Structure of ionic liquids and ionic liquid compounds are ionic liquids genuine liquids in the conventional sense? Adv Chem Phys 131:85–104Google Scholar
  101. 101.
    Berg RW (2007) Raman spectroscopy and ab-initio model calculations on ionic liquids. Monatshefte für Chemie 138:1045–1075Google Scholar
  102. 102.
    Hu ZH, Margulis C (2006) Heterogeneity in a room-temperature ionic liquid: persistent local environments and the red-edge effect. J Proc Natl Acad Sci 103:831–836Google Scholar
  103. 103.
    Bhargava BL, Devane R, Klein ML et al (2007) Nanoscale organization in room temperature ionic liquids: a coarse grained molecular dynamics simulation study. Soft Matter 3:1395–1400Google Scholar
  104. 104.
    Triolo A, Russina O, Bleif H-J et al (2007) Nanoscale segregation in room temperature ionic liquids. J Phys Chem B 111:4641–4644Google Scholar
  105. 105.
    Xiao D, Rajian JR, Cady A et al (2007) Nanostructural organization and anion effects on the temperature dependence of the optical Kerr effect spectra of ionic liquids. J Phys Chem B 111:4669–4677Google Scholar
  106. 106.
    De Andrade J, Böes ES, Stassen H (2002) Computational study of room temperature molten salts composed by 1-alkyl-3-methylimidazolium cations–force-field proposal and validation. J Phys Chem B 106:13344–13351Google Scholar
  107. 107.
    Gordon CM, Holbrey JD, Kennedy A et al (1998) Ionic liquid crystals: hexafluorophosphate salts. J Mater Chem 8:2627–2636Google Scholar
  108. 108.
    Bowlas CJ, Bruce DW, Seddon KR (1996) Liquid-crystalline ionic liquids. J Chem Soc Chem Commun 14:1625–1626Google Scholar
  109. 109.
    Holbrey JD, Seddon KR (1999) The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J Chem Soc Dalton Trans 2133–2139Google Scholar
  110. 110.
    Hardacre C, Holbrey JD, McCormac PB et al (2001) Crystal and liquid crystalline polymorphism in 1-alkyl-3-methylimidazolium tetrachloropalladate(II) salts. J Mater Chem 11:346–350Google Scholar
  111. 111.
    Bradley AE, Hardacre C, Holbrey JD et al (2002) Small-angle X-ray scattering studies of liquid crystalline 1-alkyl-3-methylimidazolium salts. Chem Mater 14:629–635Google Scholar
  112. 112.
    Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083Google Scholar
  113. 113.
    Sheldon R (2001) Catalytic reactions in ionic liquids. Chem Commun 23:2399–2407Google Scholar
  114. 114.
    Zhao DB, Zhao FF, Scopelliti R et al (2004) Synthesis and characterization of ionic liquids incorporating the nitrile functionality. Inorg Chem 43:2197–2205Google Scholar
  115. 115.
    Larsen AS, Holbrey JD, Tham FS et al (2000) Designing ionic liquids: imidazolium melts with inert carborane anions. J Am Chem Soc 122:7264–7272Google Scholar
  116. 116.
    Law G, Watson PR (2001) Surface tension measurements of n-alkylimidazolium ionic liquids. Langmuir 17:6138–6141Google Scholar
  117. 117.
    Carter EB, Culver SL, Fox PA et al (2004) Sweet success: ionic liquids derived from non-nutritive sweeteners. Chem Commun 630–631Google Scholar
  118. 118.
    Ohno H, Yoshizawa M (2002) Ion conductive characteristics of ionic liquids prepared by neutralization of alkylimidazoles. Solid State Ion 154:303–309Google Scholar
  119. 119.
    McEwen AB, Ngo HL, LeCompte K et al (1999) Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications. J Electrochem Soc 146:1687–1695Google Scholar
  120. 120.
    Ngo HL, LeCompte K, Hargens L et al (2000) Thermal properties of imidazolium ionic liquids. Thermochim Acta 357:97–102Google Scholar
  121. 121.
    Zhou ZB, Matsumoto H, Tatsumi K (2005) Structure and properties of new ionic liquids based on alkyl- and alkenyltrifluoroborates. Chemphyschem 6:1324–1332Google Scholar
  122. 122.
    Yoshida Y, Muroi K, Otsuka A et al (2004) 1-Ethyl-3-methylimidazolium based ionic liquids containing cyano groups: synthesis, characterization, and crystal structure. Inorg Chem 43:1458–1462Google Scholar
  123. 123.
    Hagiwara R, Hirashige T, Tsuda T et al (1999) Acidic 1-ethyl-3-methylimidazolium fluoride: a new room temperature ionic liquid. J Fluorine Chem 99:1–3Google Scholar
  124. 124.
    Fuller J, Carlin RT, Osteryoung RA et al (1997) The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate: electrochemical couples and physical properties. J Electrochem Soc 144:3881–3885Google Scholar
  125. 125.
    Matsumoto K, Hagiwara R, Yoshida R et al (2004) Syntheses, structures and properties of 1-ethyl-3-methylimidazolium salts of fluorocomplex anions. Dalton Trans 1:144–149Google Scholar
  126. 126.
    Nishida T, Tashiro Y, Yamamoto M (2003) Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte. J Fluorine Chem 120:135–141Google Scholar
  127. 127.
    Noda A, Hayamizu K, Watanabe M (2001) Pulsed-gradient spin-echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids. J Phys Chem B 105:4603–4016Google Scholar
  128. 128.
    Matsumoto H, Yanagida M, Tanimoto K et al (2000) Highly conductive room temperature molten salts based on small trimethylalkylammonium cations and bis(trifluoromethylsulfonyl)imide. Chem Lett 29:922–923Google Scholar
  129. 129.
    Zhang J, Wu W, Jiang T et al (2003) Conductivities and viscosities of the ionic liquid [bmim][PF6] + water + ethanol and [bmim][PF6] + water + acetone ternary mixtures. J Chem Eng Data 48:1315–1317Google Scholar
  130. 130.
    Okoturo OO, VanderNoot TJ (2004) Temperature dependence of viscosity for room temperature ionic liquids. J Electroanal Chem 568:167–181Google Scholar
  131. 131.
    Noda A, Watanabe M (2000) Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochim Acta 45:1265–1270Google Scholar
  132. 132.
    Domanska U, Marciniak A (2005) Liquid phase behaviour of 1-hexyloxymethyl-3-methyl-imidazolium-based ionic liquids with hydrocarbons: the influence of anion. J Chem Thermodyn 37:577–585Google Scholar
  133. 133.
    Suarez PAZ, Selbach VM, Dullius JEL et al (1997) Enlarged electrochemical window in dialkyl-imidazolium cation based room-temperature air and water-stable molten salts. Electrochim Acta 42:2533–2535Google Scholar
  134. 134.
    Wilkes JS, Levisky JA, Wilson RA et al (1982) Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry spectroscopy, and synthesis. Inorg Chem 21:1263–1264Google Scholar
  135. 135.
    Carmichael AJ, Hardacre C, Holbrey JD et al (1999) In: Truelove PC, De Long HC, Stafford GR et al (eds) Eleventh international symposium on molten salts. The Electrochemical Society, PenningtonGoogle Scholar
  136. 136.
    Fannin AA Jr, Floreani DA, King LA et al (1984) Properties of 1, 3-dialkylimldazollum chloride-aluminum chloride ionic liquids. 2. Phase transitions, densities, electrical conductivities, and viscosities. J Phys Chem 88:2614–2621Google Scholar
  137. 137.
    Ye C, Shreeve JM (2004) Syntheses of very dense halogenated liquids. J Org Chem 69:6511–6513Google Scholar
  138. 138.
    Crosthwaite JM, Muldoon MJ, Dixon JK et al (2005) Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J Chem Thermodyn 37:559–568Google Scholar
  139. 139.
    Singh RP, Winter RW, Gard GL et al (2003) Quaternary salts containing the pentafluorosulfanyl (SF5) group. Inorg Chem 42:6142–6146Google Scholar
  140. 140.
    Hasan M, Ivan V, Kozhevnikov M et al (1999) Gold compounds as ionic liquids. synthesis, structures, and thermal properties of N, N-dialkylimidazolium tetrachloroaurate salts. Inorg Chem 38:5637–5638Google Scholar
  141. 141.
    Cooper EI, O’Sullivan EJM (2000) In: Gale RJ, Blomgren G (eds) Proceedings of the eighth international symposium on molten salts. The Electrochemical Society, PenningtonGoogle Scholar
  142. 142.
    Ma M, Johnson KE (1994) In: Hussey CL, Newman DS, Mamantov G et al (eds) Proceedings of the ninth international symposium on molten salts. The Electrochemical Society, PenningtonGoogle Scholar
  143. 143.
    Matsumoto K, Hagiwara R (2005) A new room temperature ionic liquid of oxyfluorometallate anion: 1-ethyl-3-methylimidazolium oxypentafluorotungstate (EMImWOF5). J Fluorine Chem 126:1095–1100Google Scholar
  144. 144.
    Mu ZG, Zhou F, Zhang SX et al (2005) Effect of the functional groups in ionic liquid molecules on the friction and wear behavior of aluminum alloy in lubricated aluminum-on-steel contact. Tribol Int 38:725–731Google Scholar
  145. 145.
    Guillet E, Imbert D, Scopelliti R et al (2004) Tuning the emission color of europium-containing ionic liquid-crystalline phases. Mater Chem 16:4063–4073Google Scholar
  146. 146.
    Dzyuba SV, Bartsch RA (2001) New room-temperature ionic liquids with C2-symmetrical imidazolium cations. Chem Commun 1466–1467Google Scholar
  147. 147.
    Sun J, MacFarlane DR, Forsyth M (2003) A new family of ionic liquids based on the 1-alkyl-2-methyl pyrrolinium cation. Electrochim Acta 48:1707–1711Google Scholar
  148. 148.
    Carpio RA, King LA, Lindstrom RE et al (1979) Density, electric conductivity, and viscosity of several N-alkylpyridinium halides and their mixtures with aluminum chloride. J Electrochem Soc 126:1644–1650Google Scholar
  149. 149.
    Widegren JA, Saurer EM, Marsh KN et al (2005) Electrolytic conductivity of four imidazolium-based room-temperature ionic liquids and the effect of a water impurity. J Chem Thermodyn 37:569–575Google Scholar
  150. 150.
    Neve F, Imperor-Clerc M (2004) An Ia3 ̄d thermotropic cubic phase from N-alkylpyridinium tetrahalocuprates. Liq Cryst 31:907–912Google Scholar
  151. 151.
    Taubert A, Steiner P, Mantion A (2005) Ionic liquid crystal precursors for inorganic particles: phase diagram and thermal properties of a CuCl nanoplatelet precursor. J Phys Chem B 109:15542–15547Google Scholar
  152. 152.
    Taubert A (2004) CuCl nanoplatelets from an ionic liquid-crystal precursor. Angew Int Ed Chem 43:5380–5382Google Scholar
  153. 153.
    Egashira M, Okadab S, Yamaki J et al (2005) Effect of small cation addition on the conductivity of quaternary ammonium ionic liquids. Electrochim Acta 50:3708–3712Google Scholar
  154. 154.
    Wasserscheid P, Welton T (2003) Ionic liquids in synthesis. Wiley-VCH, WeinheimGoogle Scholar
  155. 155.
    Fei ZF, Zhao DB, Scopelliti R et al (2004) Organometallic complexes derived from alkyne-functionalized imidazolium salts. Organometallics 23:1622–1628Google Scholar
  156. 156.
    Zhao DB, Fei ZF, Geldbach TJ et al (2004) Nitrile-functionalized pyridinium ionic liquids: synthesis, characterization, and their application in carbon-carbon coupling reactions. J Am Chem Soc 126:15876–15882Google Scholar
  157. 157.
    Pringle JM, Golding J, Forsyth CM et al (2002) Physical trends and structural features in organic salts of the thiocyanate anion. J Mater Chem 15:3475–3480Google Scholar
  158. 158.
    Yoshizawa M, Ogihara M, Ohno H (2001) Design of new ionic liquids by neutralization of imidazole derivatives with imide-type acids. Electrochem Solid Lett 4:E25–E27Google Scholar
  159. 159.
    Kim KS, Choi S, Demberelnyamba D et al (2004) Ionic liquids based on N-alkyl-N-methylmorpholinium salts as potential electrolytes. Chem Commun 828–829Google Scholar
  160. 160.
    Chun S, Dzyuba SV, Bartsch RA (2001) Influence of structural variation in room-temperature ionic liquids on the selectivity and efficiency of competitive alkali metal salt extraction by a crown ether. Anal Chem 73:3737–3741Google Scholar
  161. 161.
    Holbrey JD, Turner MB, Reichert WM et al (2003) New ionic liquids containing an appended hydroxyl functionality from the atom-efficient, one-pot reaction of 1-methylimidazole and acid with propylene oxide. Green Chem 5:731–736Google Scholar
  162. 162.
    Branco LC, Rosa JN, Moura Ramos JJ et al (2002) Preparation and characterization of new room temperature ionic liquids. Chem Eur J 8:3671–3677Google Scholar
  163. 163.
    Fraga-Dubreuil J, Famelart MH, Bazureau JP (2002) Ecofriendly fast synthesis of hydrophilic poly (ethyleneglycol)-ionic liquid matrices for liquid-phase organic synthesis. Org Process Res Dev 6:374–378Google Scholar
  164. 164.
    Xu W, Cooper EI, Angell CA (2003) Ionic liquids: ion mobilities, glass temperatures, and fragilities. J Phys Chem B 107:6170–6178Google Scholar
  165. 165.
    Ohno H, Nishimura N (2001) Ion conductive characteristics of DNA film containing ionic liquids. J Electrochem Soc 148:E168–E170Google Scholar
  166. 166.
    Pringle JM, Golding J, Baranyai K et al (2003) The effect of anion fluorination in ionic liquids—physical properties of a range of bis(methanesulfonyl)amide salts. New J Chem 27:1504–1510Google Scholar
  167. 167.
    Del Sesto RE, Corley C, Robertson A et al (2005) Tetraalkylphosphonium-based ionic liquids. J Organometallic Chem 690:2536–2542Google Scholar
  168. 168.
    Xue H, Arritt SW, Twamley B et al (2004) Energetic salts from N-aminoazoles. Inorg Chem 43:7972–7977Google Scholar
  169. 169.
    Katritzky AR, Singh S, Kirichenko K et al (2005) 1-Butyl-3-methylimidazolium 3,5-dinitro-1,2,4-triazolate: a novel ionic liquid containing a rigid, planar energetic anion. Chem Commun 868–870Google Scholar
  170. 170.
    Kim JW, Singh RP, Shreeve JM (2004) Low melting inorganic salts of alkyl-, fluoroalkyl-, alkyl ether-, and fluoroalkyl ether-substituted oxazolidine and morpholine. Inorg Chem 43:2960–2966Google Scholar
  171. 171.
    Tao G, He L, Sun N et al (2005) New generation ionic liquids: cations derived from amino acids. Chem Commun 3562–3564Google Scholar
  172. 172.
    Pernak J, Feder-Kubis J (2005) Synthesis and properties of chiral ammonium-based ionic liquids. Chem Eur J 11:4441–4449Google Scholar
  173. 173.
    Jin CM, Twamley B, Shreeve JM (2005) Low-melting dialkyl- and bis(polyfluoroalkyl)-substituted 1,1′-methylenebis(imidazolium) and 1,1′−methylenebis(1,2,4-triazolium) bis(trifluoromethanesulfonyl)amides: ionic liquids leading to bis(N-heterocyclic carbene) complexes of palladium. Organometallics 24:3020–3023Google Scholar
  174. 174.
    Baranyai KJ, Deacon GB, MacFarlane DR et al (2004) Thermal degradation of ionic liquids at elevated temperatures. Aust J Chem 57:145–147Google Scholar
  175. 175.
    Ignatev NV, Welz-Biermann U, Kucheryna A et al (2005) New ionic liquids with tris(perfluoroalkyl)trifluorophosphate (FAP) anions. J Fluorine Chem 126:1150–1159Google Scholar
  176. 176.
    Zhang SM, Hou YM, Huang WG et al (2005) Preparation and characterization of novel ionic liquid based on benzotriazolium cation. Electrochim Acta 50:4097–4103Google Scholar
  177. 177.
    Oxley JD, Prozorov T, Suslick KS (2003) Sonochemistry and sonoluminescence of room-temperature ionic liquids. J Am Chem Soc 125:11138–11139Google Scholar
  178. 178.
    Gao Y, Twamley B, Shreeve JM (2004) The first (ferrocenylmethyl) imidazolium and (ferrocenylmethyl)triazolium room temperature ionic liquids. Inorg Chem 43:3406–3412Google Scholar
  179. 179.
    Gu Z, Brennecke JF (2002) Volume expansivities and isothermal compressibilities of imidazolium and pyridinium-based ionic liquids. J Chem Eng Data 47:339–345Google Scholar
  180. 180.
    Domańska U, Marciniak A (2003) Solubility of 1-alkyl-3-methylimidazolium hexafluorophosphate in hydrocarbons. J Chem Eng Data 48:451–456Google Scholar
  181. 181.
    Letcher TM, Reddy P (2004) Ternary liquid–liquid equilibria for mixtures of 1-hexyl-3-methylimidozolium (tetrafluoroborate or hexafluorophosphate) + ethanol + an alkene at T = 298.2K. Fluid Phase Equilib 219:107–112Google Scholar
  182. 182.
    Morgan D, Ferguson L, Scovazzo P et al (2005) Diffusivities of gases in room-temperature ionic liquids: data and correlations obtained using a lag-time technique. Ind Eng Chem Res 44:4815–4823Google Scholar
  183. 183.
    Rebelo LPN, Najdanovic-Visak V, Gomes de Azevedo R et al (2005) Phase behavior and thermodynamic properties of ionic liquids, ionic liquid mixtures, and ionic liquid solutions. In: Rogers RD, Seddon KR (eds) Ionic liquids IIIA: fundamentals, progress, challenges, and opportunities–properties and structure, ACS Symp Ser 901. American Chemical Society, Washington, DCGoogle Scholar
  184. 184.
    Gomes de Azevedo R, Esperança JMSS, Szydlowski J et al (2005) Thermophysical and thermodynamic properties of ionic liquids over an extended pressure range: [bmim][NTf2] and [hmim][NTf2]. J Chem Thermodyn 37:888–899Google Scholar
  185. 185.
    Letcher TM, Deenadayalu N, Soko B et al (2003) Ternary liquid-liquid equilibria for mixtures of 1-methyl-3-octylimidazolium chloride + an alkanol + an alkane at 298.2 K and 1 bar. J Chem Eng Data 48:904–907Google Scholar
  186. 186.
    Soriano AN, Doma BT Jr, Li MH (2009) Measurements of the density and refractive index for 1-n-butyl-3-methylimidazolium-based ionic liquids. J Chem Thermodyn 41:301–307Google Scholar
  187. 187.
    Gomes de Azevedo R, Esperança JMSS, Najdanovic-Visak V et al (2005) Thermophysical and thermodynamic properties of 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate over an extended pressure range. J Chem Eng Data 50:997–1008Google Scholar
  188. 188.
    Carda-Broch S, Berthod A, Armstrong DW (2003) Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. Anal Bioanal Chem 375:191–199Google Scholar
  189. 189.
    Wang J, Tian Y, Zhao Y et al (2003) A volumetric and viscosity study for the mixtures of 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid with acetonitrile, dichloromethane, 2-butanone and n, n –dimethylformamide. Green Chem 5:618–622Google Scholar
  190. 190.
    Kabo GJ, Blokhin AV, Paulechka YU et al (2004) Thermodynamic properties of 1-butyl-3-methylimidazolium hexafluorophosphate in the condensed state. J Chem Eng Data 49:453–461Google Scholar
  191. 191.
    Lee SH, Lee SB (2005) The Hildebrand solubility parameters, cohesive energy densities and internal energies of 1-alkyl-3-methylimidazolium-based room temperature ionic liquids. Chem Commun 3469–3471Google Scholar
  192. 192.
    Harris KR, Woolf LA, Kanakubo M (2005) Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J Chem Eng Data 50:1777–1782Google Scholar
  193. 193.
    Zafarani-Moattar MT, Shekaari H (2005) Volumetric and speed of sound of ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate with acetonitrile and methanol at T = (298.15–318.15) K. J Chem Eng Data 50:1694–1699Google Scholar
  194. 194.
    Fadeev AG, Meagher MM (2001) Opportunities for ionic liquids in recovery of biofuels. Chem Commun 295–296Google Scholar
  195. 195.
    Huo Y, Xia S, Ma P (2007) Densities of ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium tetrafluoroborate, with benzene, acetonitrile, and 1-propanol at T = (293.15 to 343.15) K. J Chem Eng Data 52:2077–2082Google Scholar
  196. 196.
    Liu JF, Jiang GB, Yg C et al (2003) Use of ionic liquids for liquid-phase microextraction of polycyclic aromatic hydrocarbons. Anal Chem 75:5870–5876Google Scholar
  197. 197.
    Hyun BR, Dzyuba SV, Bartsch RA et al (2002) Intermolecular dynamics of room-temperature ionic liquids: femtosecond optical Kerr effect measurements on 1-alkyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imides. J Phys Chem A 106:7579–7585Google Scholar
  198. 198.
    Krummen M, Wasserscheid P, Gmehling J (2002) Measurement of activity coefficients at infinite dilution in ionic liquids using the dilutor technique. J Chem Eng Data 47:1411–1417Google Scholar
  199. 199.
    Luo H, Dai S, Bonnesen PV (2004) Solvent extraction of Sr2+ and Cs+ based on room-temperature ionic liquids containing monoaza-substituted crown ethers. Anal Chem 76:2773–2779Google Scholar
  200. 200.
    Paulechka YU, Blokhin AV, Kabo GJ et al (2007) Thermodynamic properties and polymorphism of 1-alkyl-3-methylimidazolium bis(triflamides). J Chem Thermodyn 39:866–877Google Scholar
  201. 201.
    Rebelo LPN, Najdanovic-Visak V, Visak ZP et al (2004) A detailed thermodynamic analysis of [C4mim][BF4] + water as a case study to model ionic liquid aqueous solutions. Green Chem 6:369–381Google Scholar
  202. 202.
    Triolo A, Russina O, Hardacre C et al (2005) Relaxation processes in room temperature ionic liquids: the case of 1-butyl-3-methyl imidazolium hexafluorophosphate. J Phys Chem B 109:22061–22066Google Scholar
  203. 203.
    Pereiro AB, Rodríguez A (2007) Thermodynamic properties of ionic liquids in organic solvents from (293.15 to 303.15) K. J Chem Eng Data 52:600–608Google Scholar
  204. 204.
    Troncoso J, Cerdeiriña CA, Sanmamed YA et al (2006) Thermodynamic properties of imidazolium-based ionic liquids: densities, heat capacities, and enthalpies of fusion of [bmim][PF6] and [bmim][NTf2]. J Chem Eng Data 51:1856–1859Google Scholar
  205. 205.
    Li W, Zhang Z, Han B et al (2007) Effect of water and organic solvents on the ionic dissociation of ionic liquids. J Phys Chem B 111:6452–6456Google Scholar
  206. 206.
    Heintz A, Klasen D, Lehmann JK et al (2005) Excess molar volumes and liquid–liquid equilibria of the ionic liquid 1-methyl-3-octyl-imidazolium tetrafluoroborate mixed with butan-1-ol and pentan-1-ol. J Solut Chem 34:1135–1144Google Scholar
  207. 207.
    Fu D, Sun X, Pu J et al (2006) Effect of water content on the solubility of CO2 in the ionic liquid [bmim][PF6]. J Chem Eng Data 51:371–375Google Scholar
  208. 208.
    Gardas RL, Freire MG, Carvalho PJ et al (2007) High-pressure densities and derived thermodynamic properties of imidazolium-based ionic liquids. J Chem Eng Data 52:80–88Google Scholar
  209. 209.
    Pereiro AB, Tojo E, Rodríguez A et al (2006) Properties of ionic liquid HMIMPF6 with carbonates, ketones and alkyl acetates. J Chem Thermodyn 38:651–661Google Scholar
  210. 210.
    Rebelo LPN, Canongia Lopes JN, Esperança JMSS et al (2005) On the critical temperature, normal boiling point, and vapour pressure of ionic liquids. J Phys Chem B 109:6040–6044Google Scholar
  211. 211.
    Canongia Lopes JN, Cordeiro TC, Esperança JMSS et al (2005) Deviations from ideality in mixtures of two ionic liquids containing a common ion. J Phys Chem B 109:3519–3525Google Scholar
  212. 212.
    Sanmamed YA, González-Salgado D, Troncoso J et al (2007) Viscosity-induced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry. Fluid Phase Equilib 252:96–102Google Scholar
  213. 213.
    Zhou ZB, Matsumoto H, Tatsumi K (2004) Low-melting, low-viscous, hydrophobic ionic liquids: 1-alkyl(alkyl ether)-3-methylimidazolium perfluoroalkyltrifluoroborate. Chem Eur J 10:6581–6591Google Scholar
  214. 214.
    Tomida D, Kumagai A, Qiao K et al (2006) Viscosity of [bmim][PF6] and [bmim][BF4] at high pressure. Int J Thermophys 27:39–47Google Scholar
  215. 215.
    Harris KR, Kanakubo M, Woolf LA (2007) Temperature and pressure dependence of the viscosity of the ionic liquids 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J Chem Eng Data 52:1080–1085Google Scholar
  216. 216.
    Harris KR, Kanakubo M, Woolf LA (2006) Temperature and pressure dependence of the viscosity of the ionic liquids 1-methyl-3-octylimidazolium hexafluorophosphate and 1-methyl-3-octylimidazolium tetrafluoroborate. J Chem Eng Data 51:1161–1167Google Scholar
  217. 217.
    Seddon KR, Stark A, Torres MJ (2002) Viscosity and density of 1-alkyl-3methylimidazolium ionic liquids. In: Abraham M, Moens L (eds) Clean solvents: alternative media for chemical reactions and processing. ACS Symp Ser, American Chemical Society, Washington, DCGoogle Scholar
  218. 218.
    Jacquemin J, Husson P, Padua AAH et al (2006) Density and viscosity of several pure and water-saturated ionic liquids. Green Chem 8:172–180Google Scholar
  219. 219.
    Arce A, Rodríguez O, Soto A (2004) tert-Amyl ethyl ether separation from its mixtures with ethanol using the 1-butyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid: liquid-liquid equilibrium. Ind Eng Chem Res 43:8323–8327Google Scholar
  220. 220.
    Yang JZ, Lu XM, Gui JS et al (2004) A new theory for ionic liquids—the Interstice Model Part 1. The density and surface tension of ionic liquid EMISE. Green Chem 6:541–543Google Scholar
  221. 221.
    Yang JZ, Lu XM, Gui JS et al (2005) Volumetric properties of room temperature ionic liquid. 2. The concentrated aqueous solutions of 1-methyl-3-ethylimidazolium ethyl sulfate + water in a temperature range of 278.2 K to 338.2 K. J Chem Thermodyn 37:1250–1255Google Scholar
  222. 222.
    Arce A, Rodil E, Soto A (2006) Volumetric and viscosity study for the mixtures of 2-ethoxy-2-methylpropane, ethanol, and 1-ethyl-3-methylimidazolium ethyl sulfate ionic liquid. J Chem Eng Data 51:1453–1457Google Scholar
  223. 223.
    Comminges C, Barhdadi R, Laurent M et al (2006) Determination of viscosity, ionic conductivity, and diffusion coefficients in some binary systems: ionic liquids + molecular solvents. J Chem Eng Data 51:680–685Google Scholar
  224. 224.
    Gómez E, González B, Calvar N et al (2006) Physical properties of pure 1-ethyl-3-methylimidazolium ethylsulfate and its binary mixtures with ethanol and water at several temperatures. J Chem Eng Data 51:2096–2102Google Scholar
  225. 225.
    Scopigno T, Ruocco G, Sette F et al (2003) Is the fragility of a liquid embedded in the properties of its glass? Science 302:849–852Google Scholar
  226. 226.
    Abraham MA, Moens L (2002) Clean solvents. Alternative media for chemical reactions and processing. American Chemical Society, Washington, DCGoogle Scholar
  227. 227.
    Seddon KR, Stark A, Torres M (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. J Pure Appl Chem 72:2275–2287Google Scholar
  228. 228.
    Kitaoka S, Nobuoka K, Ishikawa Y (2005) Ionic liquids for tetraarylporphyrin preparation. Tetrahedron 61:7678–7685Google Scholar
  229. 229.
    McFarlane DR, Sun AJ, Golding J et al (2000) High conductivity molten salts based on the imide ion. Electrochim Acta 45:1271–1278Google Scholar
  230. 230.
    Sudhir NVKA, Brennecke JF, Samanta A (2001) How polar are room-temperature ionic liquids? Chem Commun 413–414Google Scholar
  231. 231.
    Marsh KN, Boxall JA, Lichtenthaler R (2004) Room temperature ionic liquids and their mixtures—a review. Fluid Phase Equilib 219:93–98Google Scholar
  232. 232.
    Zhou ZB, Matsumoto H, Tatsumi K (2004) Low-viscous, low-melting, hydrophobic ionic liquids: 1-alkyl-3-methylimidazolium trifluoromethyltrifluoroborate. Chem Lett 33:680–681Google Scholar
  233. 233.
    Nanjundiah C, McDevitt F, Koch VR (1997) Differential capacitance measurements in solvent-free ionic liquids at Hg and C interfaces. J Electrochem Soc 144:3392–3397Google Scholar
  234. 234.
    Noda A, Watanabe M (1999) Abstracts of annual meeting of the Electrochemical Society of Japan, p 309Google Scholar
  235. 235.
    Ito K, Nishina N, Ohno H (2000) Enhanced ion conduction in imidazolium-type molten salts. Electrochim Acta 45:1295–1298Google Scholar
  236. 236.
    Golding J, MacFarlane DR, Forsyth M (1998) Imidazolium room temperature molten salt systems. Molten Salt Forum 5–6:589–592Google Scholar
  237. 237.
    Zhou ZB, Takeda M, Ue M (2004) New hydrophobic ionic liquids based on perfluoroalkyltrifluoroborate anions. J Fluorine Chem 125:471–476Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Heavy Oil Processing and High-Pressure Fluid Phase Behavior & Property Research LaboratoryChina University of PetroleumBeijingChina

Personalised recommendations