Advertisement

Structures and Thermodynamic Properties of Ionic Liquids

  • Tiancheng MuEmail author
  • Buxing Han
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 151)

Abstract

This chapter gives a brief review on the structures and thermodynamic properties of ionic liquids. It is organized as follows. The introduction gives the definition and application fields of ionic liquids. Following that is the main part where we present a review on the density, phase behavior, enthalpy of vaporization, and heat capacity of ionic liquids. The properties of both pure ionic liquids and mixtures with ionic liquids are discussed. Some experimental pieces of apparatus for working with these properties are introduced briefly. We then review the correlations with the experimental data and prediction methods based on MD or ab initio methods. In the discussion of phase behavior, the vapor–liquid equilibria, liquid–liquid equilibria, and the activity coefficients at infinite dilution are presented separately. In the last part, a summary and outlook on this topic are given.

Keywords

Ionic liquids Density PVT behavior Heat capacity Enthalpy of vaporization 

Abbreviations

1-Alkyl-3-methylimidazolium

[CnMIM] or [AMIM] with A = M, E, P, B, Pe, H, O, D, as alkyl = methyl, ethyl, propyl, pentyl, hexyl, octyl, decyl

1-Alkyl-2,3-dimethylimidazolium

[CnMMIM] with A = M, E, P, B, Pe, H, O, D, as alkyl = methyl, ethyl, propyl, pentyl, hexyl, octyl, decyl

[Ace]

Acesulfamate

[BETI]

Bis(perfluoroethanesulfonyl) imide

[BF4]

Tetrafluoroborate

[C(CN)3]

Tricyanomethane

[CH3(OCH2)2OSO3]

Diethyleneglycol monomethylethersulfate

[CH3(OCH2CH2)2OSO3]

Diethyleneglycol monomethylether sulfate

[DCA]

Dicyanamide

[EtOSO3]

Ethylsulfate

ILs

Ionic liquids

[Lac]

Lactate

[Methide]

Tris(trifluoromethylsulfonyl) methide

[MeSO3]

Methanesulfonate

[MeOSO3]

Methylsulfate

[MeOHPO2]

Methylphosphonate

[NR1R2R3R4]

Quaternary ammonium

[OcOSO3]

Octylsulfate

[OTF]

Trifluoromethanesulfonate or triflate

PEG

Polyethylene glycol

[PF6]

Hexafluorophosphate

[PF3(CF2CF3)3]

Tris(pentafluoroethyl) trifluorophosphate

[Py]

Pyridinium

[Pyrr]

Pyrrolidinium

[PR1R2R3R4]

Tetraalkylphosphonium

[SCN]

Thiocyanate

[TMG]

1,1,3,3-Tetramethylguanidine

[TFA]

Trifluoroacetate

[Tf2N]

Bis(trifluoromethanesulfonyl) imide or triflimide

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China (21173267, 21073207, 21133009) and the Basic Research Funds in Renmin University of China from the Central Government (12XNLL05).

References

  1. 1.
    Wilkes JS (2002) A short history of ionic liquids – from molten salts to neoteric solvents. Green Chem 4(2):73–80Google Scholar
  2. 2.
    Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37(1):123–150Google Scholar
  3. 3.
    Short P (2006) Out of the ivory tower. Chem Eng News 84(14):15–21Google Scholar
  4. 4.
    Wang P, Zakeeruddin SM, Moser JE et al (2003) A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells. J Phys Chem B 107(48):13280–13285Google Scholar
  5. 5.
    Holbrey JD (2007) Heat capacities of common ionic liquids – potential applications as thermal fluids? Chim Oggi-Chem Today 25(6):24–26Google Scholar
  6. 6.
    Franca JMP, de Castro CAN, Lopes MM et al (2009) Influence of thermophysical properties of ionic liquids in chemical process design. J Chem Eng Data 54(9):2569–2575Google Scholar
  7. 7.
    van Valkenburg ME, Vaughn RL, Williams M et al (2005) Thermochemistry of ionic liquid heat-transfer fluids. Thermochim Acta 425(1–2):181–188Google Scholar
  8. 8.
    Moens L, Blake DM, Rudnicki DL et al (2003) Advanced thermal storage fluids for solar parabolic trough systems. J Sol Ener Eng Trans-ASME 125(1):112–116Google Scholar
  9. 9.
    Visser AE, Swatloski RP, Reichert WM et al (2001) Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chem Commun 1:135–136Google Scholar
  10. 10.
    Pandey S (2006) Analytical applications of room-temperature ionic liquids: a review of recent efforts. Anal Chim Acta 556(1):38–45Google Scholar
  11. 11.
    Swatloski RP, Spear SK, Holbrey JD et al (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124(18):4974–4975Google Scholar
  12. 12.
    Li ZH, Luan YX, Mu TC et al (2009) Unusual nanostructured ZnO particles from an ionic liquid precursor. Chem Commun 10:1258–1260Google Scholar
  13. 13.
    Li ZH, Jia Z, Luan YX et al (2009) Ionic liquids for synthesis of inorganic nanomaterials. Curr Opin Solid State Mater Sci 12(1):1–8Google Scholar
  14. 14.
    Karadas F, Atilhan M, Aparicio S (2010) Review on the use of ionic liquids (ILs) as alternative fluids for CO2 capture and natural gas sweetening. Energy Fuel 24:5817–5828Google Scholar
  15. 15.
  16. 16.
    Wang JF, Li CX, Shen C et al (2009) Towards understanding the effect of electrostatic interactions on the density of ionic liquids. Fluid Phase Equilib 279(2):87–91Google Scholar
  17. 17.
    Seddon KR, Stark A, Torres MJ (2002) Viscosity and density of 1-alkyl-3-methylimidazolium ionic liquids. In: Abraham MA, Moens L (eds) Clean solvents – alternative media for chemical reactions and processing. ACS symposium series, vol 819. American Chemical Society, Washington, DC, pp 34–49Google Scholar
  18. 18.
    Zhang ZF, Wu WZ, Han BX et al (2005) Phase separation of the reaction system induced by CO2 and conversion enhancement for the esterification of acetic acid with ethanol in ionic liquid. J Phys Chem B 109(33):16176–16179Google Scholar
  19. 19.
    Zhang ZF, Wu WZ, Wang B et al (2007) High-pressure phase behavior of CO2/acetone/ionic liquid system. J Supercrit Fluids 40(1):1–6Google Scholar
  20. 20.
    Wandschneider A, Lehmann JK, Heintz A (2008) Surface tension and density of pure ionic liquids and some binary mixtures with 1-propanol and 1-butanol. J Chem Eng Data 53(2):596–599Google Scholar
  21. 21.
    Kilaru P, Baker GA, Scovazzo P (2007) Density and surface tension measurements of imidazolium-, quaternary phosphonium-, and ammonium-based room-temperature ionic liquids: data and correlations. J Chem Eng Data 52(6):2306–2314Google Scholar
  22. 22.
    Klomfar J, Souckova M, Patek J (2010) Temperature dependence measurements of the density at 0.1 MPa for 1-alkyl-3-methylimidazolium-based ionic liquids with the trifluoromethanesulfonate and tetrafluoroborate anion. J Chem Eng Data 55(9):4054–4057Google Scholar
  23. 23.
    Liu QS, Tong J, Tan ZC et al (2010) Density and surface tension of ionic liquid C2mim PF3(CF2CF3)3 and prediction of properties Cnmim PF3(CF2CF3)3 (n = 1, 3, 4, 5, 6). J Chem Eng Data 55(7):2586–2589Google Scholar
  24. 24.
    Sanchez LG, Espel JR, Onink F et al (2009) Density, viscosity, and surface tension of synthesis grade imidazolium, pyridinium, and pyrrolidinium based room temperature ionic liquids. J Chem Eng Data 54(10):2803–2812Google Scholar
  25. 25.
    Rodriguez H, Brennecke JF (2006) Temperature and composition dependence of the density and viscosity of binary mixtures of water plus ionic liquid. J Chem Eng Data 51(6):2145–2155Google Scholar
  26. 26.
    Pereiro AB, Santamarta F, Tojo E et al (2006) Temperature dependence of physical properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate. J Chem Eng Data 51(3):952–954Google Scholar
  27. 27.
    Gardas RL, Ge R, Goodrich P et al (2010) Thermophysical properties of amino acid-based ionic liquids. J Chem Eng Data 55(4):1505–1515Google Scholar
  28. 28.
    Tokuda H, Hayamizu K, Ishii K et al (2004) Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J Phys Chem B 108(42):16593–16600Google Scholar
  29. 29.
    Tokuda H, Ishii K, Susan MABH et al (2006) Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures. J Phys Chem B 110(6):2833–2839Google Scholar
  30. 30.
    Tokuda H, Hayamizu K, Ishii K et al (2005) Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B 109(13):6103–6110Google Scholar
  31. 31.
    Jin H, O’Hare B, Dong J et al (2008) Physical properties of ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various anions and the bis(trifluoromethylsulfonyl)imide anion with various cations. J Phys Chem B 112(1):81–92Google Scholar
  32. 32.
    Tariq M, Forte PAS, Gomes MFC et al (2009) Densities and refractive indices of imidazolium- and phosphonium-based ionic liquids: effect of temperature, alkyl chain length, and anion. J Chem Thermodyn 41(6):790–798Google Scholar
  33. 33.
    Esperanca J, Visak ZP, Plechkova NV et al (2006) Density, speed of sound, and derived thermodynamic properties of ionic liquids over an extended pressure range. 4. C3mim NTf2 and C5mim NTf2. J Chem Eng Data 51(6):2009–2015Google Scholar
  34. 34.
    Klomfar J, Souckova M, Patek J (2009) Buoyancy density measurements for 1-alkyl-3-methylimidazolium based ionic liquids with tetrafluoroborate anion. Fluid Phase Equilib 282(1):31–37Google Scholar
  35. 35.
    Bogdanov MG, Petkova D, Hristeva S et al (2010) New guanidinium-based room-temperature ionic liquids. Substituent and anion effect on density and solubility in water. Z Naturforsch B Chem Sci 65(1):37–48Google Scholar
  36. 36.
    Kagimoto J, Taguchi S, Fukumoto K et al (2010) Hydrophobic and low-density amino acid ionic liquids. J Mol Liq 153(2–3):133–138Google Scholar
  37. 37.
    Esperanca J, Guedes HJR, Blesic M et al (2006) Densities and derived thermodynamic properties of ionic liquids. 3. Phosphonium-based ionic liquids over an extended pressure range. J Chem Eng Data 51(1):237–242Google Scholar
  38. 38.
    Gu ZY, Brennecke JF (2002) Volume expansivities and isothermal compressibilities of imidazolium and pyridinium-based ionic liquids. J Chem Eng Data 47(2):339–345Google Scholar
  39. 39.
    Sanmamed YA, Gonzalez-Salgado D, Troncoso J et al (2007) Viscosity-induced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry. Fluid Phase Equilib 252(1–2):96–102Google Scholar
  40. 40.
    Iglesias-Otero MA, Troncoso J, Carballo E et al (2007) Density and refractive index for binary systems of the ionic liquid [BMIM][BF4] with methanol, 1,3-dichloropropane, and dimethyl carbonate. J Solut Chem 36(10):1219–1230Google Scholar
  41. 41.
    Rossen WR, Kohn JP (1984) Behavior of microemulsions under compression. SPEJ Soc Pet Eng J 24(5):536–544Google Scholar
  42. 42.
    Doy N, McHale G, Newton MI et al (2010) Small volume laboratory on a chip measurements incorporating the quartz crystal microbalance to measure the viscosity-density product of room temperature ionic liquids. Biomicrofluidics 4(1):014107Google Scholar
  43. 43.
    McHale G, Hardacre C, Ge R et al (2008) Density-viscosity product of small-volume ionic liquid samples using quartz crystal impedance analysis. Anal Chem 80(15):5806–5811Google Scholar
  44. 44.
    Doy N, McHale G, Newton MI et al (2009) Density and viscosity measurements of room temperature ionic liquids using patterned quartz crystal microbalances. In: 2009 joint meeting of the European Frequency and Time Forum and the IEEE International Frequency Control Symposium, vols 1 and 2, pp 1043–1045Google Scholar
  45. 45.
    Jacquemin J, Nancarrow P, Rooney DW et al (2008) Prediction of ionic liquid properties. II. Volumetric properties as a function of temperature and pressure. J Chem Eng Data 53(9):2133–2143Google Scholar
  46. 46.
    Xu XC, Peng CJ, Liu HL et al (2009) Modeling PVT properties and phase equilibria for systems containing ionic liquids using a new lattice-fluid equation of state. Ind Eng Chem Res 48(24):11189–11201Google Scholar
  47. 47.
    Yang JZ, Lu XM, Gui JS et al (2004) A new theory for ionic liquids – the interstice model part 1. The density and surface tension of ionic liquid EMISE. Green Chem 6(11):541–543Google Scholar
  48. 48.
    Yang L, Sandler SI, Peng CJ et al (2010) Prediction of the phase behavior of ionic liquid solutions. Ind Eng Chem Res 49(24):12596–12604Google Scholar
  49. 49.
    Ye CF, Shreeve JM (2007) Rapid and accurate estimation of densities of room-temperature ionic liquids and salts. J Phys Chem A 111(8):1456–1461Google Scholar
  50. 50.
    Gardas RL, Coutinho JAP (2008) Extension of the Ye and Shreeve group contribution method for density estimation of ionic liquids in a wide range of temperatures and pressures. Fluid Phase Equilib 263(1):26–32Google Scholar
  51. 51.
    Tome LIN, Carvalho PJ, Freire MG et al (2008) Measurements and correlation of high-pressure densities of imidazolium-based ionic liquids. J Chem Eng Data 53(8):1914–1921Google Scholar
  52. 52.
    Soriano AN, Doma BT, Li MH (2009) Measurements of the density and refractive index for 1-n-butyl-3-methylimidazolium-based ionic liquids. J Chem Thermodyn 41(3):301–307Google Scholar
  53. 53.
    Soriano AN, Doma BT, Li MH (2010) Density and refractive index measurements of 1-ethyl-3-methylimidazolium-based ionic liquids. J Taiwan Inst Chem Eng 41(1):115–121Google Scholar
  54. 54.
    Valderrama JO, Robles PA (2007) Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids. Ind Eng Chem Res 46(4):1338–1344Google Scholar
  55. 55.
    Valderrama JO, Sanga WW, Lazzus JA (2008) Critical properties, normal boiling temperature, and acentric factor of another 200 ionic liquids. Ind Eng Chem Res 47(4):1318–1330Google Scholar
  56. 56.
    Valderrama JO, Zarricueta K (2009) A simple and generalized model for predicting the density of ionic liquids. Fluid Phase Equilib 275(2):145–151Google Scholar
  57. 57.
    Gardas RL, Costa HF, Freire MG et al (2008) Densities and derived thermodynamic properties of imidazolium-, pyridinium-, pyrrolidinium-, and piperidinium-based ionic liquids. J Chem Eng Data 53(3):805–811Google Scholar
  58. 58.
    Gardas RL, Freire MG, Carvalho PJ et al (2007) High-pressure densities and derived thermodynamic properties of imidazolium-based ionic liquids. J Chem Eng Data 52(1):80–88Google Scholar
  59. 59.
    Guan W, Tong J, Chen SP et al (2010) Density and surface tension of amino acid ionic liquid 1-alkyl-3-methylimidazolium glutamate. J Chem Eng Data 55(9):4075–4079Google Scholar
  60. 60.
    Wang JF, Li ZB, Li CX et al (2010) Density prediction of ionic liquids at different temperatures and pressures using a group contribution equation of state based on electrolyte perturbation theory. Ind Eng Chem Res 49(9):4420–4425Google Scholar
  61. 61.
    Lazzus JA (2009) Estimation of density as a function of temperature and pressure for imidazolium-based ionic liquids using a multilayer net with particle swarm optimization. Int J Thermophys 30(3):883–909Google Scholar
  62. 62.
    Valderrama JO, Reategui A, Rojas RE (2009) Density of ionic liquids using group contribution and artificial neural networks. Ind Eng Chem Res 48(6):3254–3259Google Scholar
  63. 63.
    Hu YF, Chu HD, Li JG et al (2011) Extension of the simple equations for prediction of the properties of mixed electrolyte solutions to the mixed ionic liquid solutions. Ind Eng Chem Res 50(7):4161–4165Google Scholar
  64. 64.
    Patwardhan VS, Kumar A (1986) A unified approach for prediction of thermodynamic properties of aqueous mixed-electrolyte solutions. Part II: volume, thermal, and other properties. AIChE J 32(9):1429–1438Google Scholar
  65. 65.
    Ghatee MH, Zare M, Moosavi F et al (2010) Temperature-dependent density and viscosity of the ionic liquids 1-alkyl-3-methylimidazolium iodides: experiment and molecular dynamics simulation. J Chem Eng Data 55(9):3084–3088Google Scholar
  66. 66.
    Derecskei B, Derecskei-Kovacs A (2008) Molecular modelling simulations to predict density and solubility parameters of ionic liquids. Mol Simul 34(10–15):1167–1175Google Scholar
  67. 67.
    Klamt A (1995) Conductor-like screening model for real solvents – a new approach to the quantitative calculation of solvation phenomena. J Phys Chem 99(7):2224–2235Google Scholar
  68. 68.
    Palomar J, Ferro VR, Torrecilla JS et al (2007) Density and molar volume predictions using COSMO-RS for ionic liquids. An approach to solvent design. Ind Eng Chem Res 46(18):6041–6048Google Scholar
  69. 69.
    Mokhtarani B, Mojtahedi MM, Mortaheb HR et al (2008) Densities, refractive indices, and viscosities of the ionic liquids 1-methyl-3-octylimidazolium tetrafluoroborate and 1-methyl-3-butylimidazolium perchlorate and their binary mixtures with ethanol at several temperatures. J Chem Eng Data 53(3):677–682Google Scholar
  70. 70.
    Iglesias-Otero MA, Troncoso J, Carballo E et al (2008) Density and refractive index in mixtures of ionic liquids and organic solvents: correlations and predictions. J Chem Thermodyn 40(6):949–956Google Scholar
  71. 71.
    Sairi NA, Yusoff R, Alias Y et al (2011) Solubilities of CO2 in aqueous N-methyldiethanolamine and guanidinium trifluoromethanesulfonate ionic liquid systems at elevated pressures. Fluid Phase Equilib 300(1–2):89–94Google Scholar
  72. 72.
    Hong SY, Im J, Palgunadi J et al (2011) Ether-functionalized ionic liquids as highly efficient SO2 absorbents. Energy Environ Sci 4(5):1802–1806Google Scholar
  73. 73.
    Anthony JL, Maginn EJ, Brennecke JF (2002) Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J Phys Chem B 106(29):7315–7320Google Scholar
  74. 74.
    Zhang XG, Han BX, Hou ZS et al (2002) Why do co-solvents enhance the solubility of solutes in supercritical fluids? New evidence and opinion. Chem Eur J 8(22):5107–5111Google Scholar
  75. 75.
    Mu TC, Zhang XG, Liu ZM et al (2004) Enthalpy of solution of 1,4-naphthoquinone in CO2 plus n-pentane in the critical region of the binary mixture: mechanism of solubility enhancement. Chem Eur J 10(2):371–376Google Scholar
  76. 76.
    Gao L, Jiang T, Zhao GY et al (2004) Transesterification between isoamyl acetate and ethanol in supercritical CO2, ionic liquid, and their mixture. J Supercrit Fluids 29(1–2):107–111Google Scholar
  77. 77.
    Blanchard LA, Hancu D, Beckman EJ et al (1999) Green processing using ionic liquids and CO2. Nature 399(6731):28–29Google Scholar
  78. 78.
    Blanchard LA, Gu ZY, Brennecke JF (2001) High-pressure phase behavior of ionic liquid/CO2 systems. J Phys Chem B 105(12):2437–2444Google Scholar
  79. 79.
    Aki S, Mellein BR, Saurer EM et al (2004) High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids. J Phys Chem B 108(52):20355–20365Google Scholar
  80. 80.
    Keskin S, Kayrak-Talay D, Akman U et al (2007) A review of ionic liquids towards supercritical fluid applications. J Supercrit Fluids 43(1):150–180Google Scholar
  81. 81.
    Zhang SJ, Yuan XL, Chen YH et al (2005) Solubilities of CO2 in 1-butyl-3-methylimidazolium hexafluorophosphate and 1,1,3,3-tetramethylguanidium lactate at elevated pressures. J Chem Eng Data 50(5):1582–1585Google Scholar
  82. 82.
    Gao HX, Han BX, Li JC et al (2004) Preparation of room-temperature ionic liquids by neutralization of 1,1,3,3-tetramethylguanidine with acids and their use as media for Mannich reaction. Synth Commun 34(17):3083–3089Google Scholar
  83. 83.
    Bates ED, Mayton RD, Ntai I et al (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124(6):926–927Google Scholar
  84. 84.
    Gurkan BE, de la Fuente JC, Mindrup EM et al (2010) Equimolar CO2 absorption by anion-functionalized ionic liquids. J Am Chem Soc 132(7):2116–2117Google Scholar
  85. 85.
    Zhang YQ, Zhang SJ, Lu XM et al (2009) Dual amino-functionalised phosphonium ionic liquids for CO2 capture. Chem Eur J 15(12):3003–3011Google Scholar
  86. 86.
    Xue ZM, Zhang ZF, Han J et al (2011) Carbon dioxide capture by a dual amino ionic liquid with amino-functionalized imidazolium cation and taurine anion. Int J Greenhouse Gas Control 5(4):628–633Google Scholar
  87. 87.
    Yu GR, Zhang SJ, Zhou GH et al (2007) Structure, interaction and property of amino-functionalized imidazolium ILs by molecular dynamics simulation and ab initio calculation. AIChE J 53(12):3210–3221Google Scholar
  88. 88.
    Zhang JM, Zhang SJ, Dong K et al (2006) Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids. Chem Eur J 12(15):4021–4026Google Scholar
  89. 89.
    Liu ZM, Wu WZ, Han BX et al (2003) Study on the phase behaviors, viscosities, and thermodynamic properties of CO2/C4mimPF6/methanol system at elevated pressures. Chem Eur J 9(16):3897–3903Google Scholar
  90. 90.
    Wu WZ, Zhang JM, Han BX et al (2003) Solubility of room-temperature ionic liquid in supercritical CO2 with and without organic compounds. Chem Commun 12:1412–1413Google Scholar
  91. 91.
    Wu WZ, Li WJ, Han BX et al (2004) Effect of organic cosolvents on the solubility of ionic liquids in supercritical CO2. J Chem Eng Data 49(6):1597–1601Google Scholar
  92. 92.
    Zhang ZF, Wu WZ, Gao HX et al (2004) Tri-phase behavior of ionic liquid-water-CO2 system at elevated pressures. Phys Chem Chem Phys 6(21):5051–5055Google Scholar
  93. 93.
    Abbott AP, Capper G, Davies DL et al (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 1:70–71Google Scholar
  94. 94.
    Li XY, Hou MQ, Han BX et al (2008) Solubility of CO2 in a choline chloride plus urea eutectic mixture. J Chem Eng Data 53(2):548–550Google Scholar
  95. 95.
    Li XY, Hou MQ, Zhang ZF et al (2008) Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters. Green Chem 10(8):879–884Google Scholar
  96. 96.
    Liu JH, Cheng SQ, Zhang JL et al (2007) Reverse micelles in carbon dioxide with ionic-liquid domains. Angew Chem Int Ed 46(18):3313–3315Google Scholar
  97. 97.
    Chandran A, Prakash K, Senapati S (2010) Self-assembled inverted micelles stabilize ionic liquid domains in supercritical CO2. J Am Chem Soc 132(35):12511–12516Google Scholar
  98. 98.
    Wu WZ, Han BX, Gao HX et al (2004) Desulfurization of flue gas: SO2 absorption by an ionic liquid. Angew Chem Int Ed 43(18):2415–2417Google Scholar
  99. 99.
    Yu GG, Zhang SJ (2007) Insight into the cation-anion interaction in 1,1,3,3-tetramethylguanidinium lactate ionic liquid. Fluid Phase Equilib 255(1):86–92Google Scholar
  100. 100.
    Wang Y, Pan H, Li H et al (2007) Force field of the TMGL ionic liquid and the solubility of SO2 and CO2 in the TMGL from molecular dynamics simulation. J Phys Chem B 111(35):10461–10467Google Scholar
  101. 101.
    Wang Y, Wang CM, Zhang LQ et al (2008) Difference for SO2 and CO2 in TGML ionic liquids: a theoretical investigation. Phys Chem Chem Phys 10(39):5976–5982Google Scholar
  102. 102.
    Yu GR, Chen XC (2011) SO2 capture by guanidinium-based ionic liquids: a theoretical study. J Phys Chem B 115(13):3466–3477Google Scholar
  103. 103.
    Koech PK, Rainbolt JE, Bearden MD et al (2011) Chemically selective gas sweetening without thermal-swing regeneration. Energy Environ Sci 4(4):1385–1390Google Scholar
  104. 104.
    Sakhaeinia H, Jalili AH, Taghikhani V et al (2010) Solubility of H2S in ionic liquids 1-ethyl-3-methylimidazolium hexafluorophosphate ([emim][PF6]) and 1-ethyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide ([emim][Tf2N]). J Chem Eng Data 55(12):5839–5845Google Scholar
  105. 105.
    Cheng XP, Mu TC, Wang XL et al (2008) Low pressure solubilities of vinyl chloride in ionic liquids. J Chem Eng Data 53(12):2807–2809Google Scholar
  106. 106.
    Cheng XP, Yang GY, Mu TC et al (2009) Absorption of vinyl chloride by room temperature ionic liquids. Clean-Soil Air Water 37(3):245–248Google Scholar
  107. 107.
    Kulkarni PS, Branco LC, Crespo JG et al (2008) Capture of dioxins by ionic liquids. Environ Sci Technol 42(7):2570–2574Google Scholar
  108. 108.
    Wang JJ, Wang HY, Zhang SL et al (2007) Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids C4mim BF4 and Cnmim Br(n = 4, 6, 8, 10, 12) in aqueous solutions. J Phys Chem B 111(22):6181–6188Google Scholar
  109. 109.
    Wang JJ, Pei YC, Zhao Y et al (2005) Recovery of amino acids by imidazolium based ionic liquids from aqueous media. Green Chem 7(4):196–202Google Scholar
  110. 110.
    Gao Y, Zhang LQ, Wang Y et al (2010) Probing electron density of h-bonding between cation-anion of imidazolium-based ionic liquids with different anions by vibrational spectroscopy. J Phys Chem B 114(8):2828–2833Google Scholar
  111. 111.
    Widegren JA, Magee JW (2007) Density, viscosity, speed of sound, and electrolytic conductivity for the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and its mixtures with water. J Chem Eng Data 52(6):2331–2338Google Scholar
  112. 112.
    Deenadayalu N, Kumar S, Bhuirajh P (2007) Liquid densities and excess molar volumes for (ionic liquids plus methanol plus water) ternary system at atmospheric pressure and at various temperatures. J Chem Thermodyn 39(9):1318–1324Google Scholar
  113. 113.
    Anthony JL, Maginn EJ, Brennecke JF (2001) Solution thermodynamics of imidazolium-based ionic liquids and water. J Phys Chem B 105(44):10942–10949Google Scholar
  114. 114.
    Rebelo LPN, Najdanovic-Visak V, Visak ZP et al (2004) A detailed thermodynamic analysis of C4mim BF4 plus water as a case study to model ionic liquid aqueous solutions. Green Chem 6(8):369–381Google Scholar
  115. 115.
    Domanska U, Laskowska M, Pobudkowska A (2009) Phase equilibria study of the binary systems (1-butyl-3-methylimidazolium thiocyanate ionic liquid plus organic solvent or water). J Phys Chem B 113(18):6397–6404Google Scholar
  116. 116.
    Letcher TM, Deenadayalu N (2003) Ternary liquid-liquid equilibria for mixtures of 1-methyl-3-octyl-imidazolium chloride plus benzene plus an alkane at T-298.2 K and 1 atm. J Chem Thermodyn 35(1):67–76Google Scholar
  117. 117.
    Wang HY, Wang JJ, Zhang SL et al (2009) Ionic association of the ionic liquids C4mim BF4, C4mimPF6, and CnmimBr in molecular solvents. Chemphyschem 10(14):2516–2523Google Scholar
  118. 118.
    Domanska U, Laskowska M (2009) Effect of temperature and composition on the density and viscosity of binary mixtures of ionic liquid with alcohols. J Solut Chem 38(6):779–799Google Scholar
  119. 119.
    Deenadayalu N, Bhuirajh P (2008) Density, speed of sound, and derived thermodynamic properties of ionic liquids EMIM+BETI- or EMIM+CH3(OCH2CH2)2OSO3 - plus methanol or plus acetone) at T = (298.15 or 303.15 or 313.15) K. J Chem Eng Data 53(5):1098–1102Google Scholar
  120. 120.
    Zafarani-Moattar MT, Majdan-Cegincara R (2007) Viscosity, density, speed of sound, and refractive index of binary mixtures of organic solvent plus ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate at 298.15 K. J Chem Eng Data 52(6):2359–2364Google Scholar
  121. 121.
    Iglesias-Otero MA, Troncoso J, Carballo E et al (2008) Densities and excess enthalpies for ionic liquids plus ethanol or plus nitromethane. J Chem Eng Data 53(6):1298–1301Google Scholar
  122. 122.
    Huo Y, Xia SQ, Ma PS (2007) Densities of ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium tetrafluoroborate, with benzene, acetonitrile, and 1-propanol at T = (293.15 to 343.15) K. J Chem Eng Data 52(5):2077–2082Google Scholar
  123. 123.
    Gao HY, Qi F, Wang HJ (2009) Densities and volumetric properties of binary mixtures of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate with benzaldehyde at T = (298.15 to 313.15) K. J Chem Thermodyn 41(7):888–892Google Scholar
  124. 124.
    Bhujrajh P, Deenadayalu N (2007) Liquid densities and excess molar volumes for binary systems (ionic liquids plus methanol or water) at 298.15, 303.15 and 313.15 K, and at atmospheric pressure. J Solut Chem 36(5):631–642Google Scholar
  125. 125.
    Mokhtarani B, Sharifi A, Mortaheb HR et al (2009) Density and viscosity of pyridinium-based ionic liquids and their binary mixtures with water at several temperatures. J Chem Thermodyn 41(3):323–329Google Scholar
  126. 126.
    Fan W, Zhou Q, Sun J et al (2009) Density, excess molar volume, and viscosity for the methyl methacrylate + 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid binary system at atmospheric pressure. J Chem Eng Data 54(8):2307–2311Google Scholar
  127. 127.
    Domanska U, Krolikowska M, Arasimowicz M (2010) Phase equilibria of (1-hexyl-3-methylimidazolium thiocyanate plus water, alcohol, or hydrocarbon) binary systems. J Chem Eng Data 55(2):773–777Google Scholar
  128. 128.
    Domanska U, Krolikowski M (2010) Phase equilibria study of the binary systems (1-butyl-3-methylimidazolium tosylate ionic liquid plus water, or organic solvent). J Chem Thermodyn 42(3):355–362Google Scholar
  129. 129.
    Simoni LD, Lin Y, Brennecke JF et al (2008) Modeling liquid-liquid equilibrium of ionic liquid systems with NRTL, electrolyte-NRTL, and UNIQUAC. Ind Eng Chem Res 47(1):256–272Google Scholar
  130. 130.
    Ji XY, Adidharma H (2009) Thermodynamic modeling of ionic liquid density with heterosegmented statistical associating fluid theory. Chem Eng Sci 64(9):1985–1992Google Scholar
  131. 131.
    Karakatsani EK, Economou LG, Kroon MC et al (2007) TPC-PSAFT modeling of gas solubility in imidazolium-based ionic liquids. J Phys Chem C 111(43):15487–15492Google Scholar
  132. 132.
    Wang TF, Peng CJ, Liu HL et al (2007) Equation of state for the vapor–liquid equilibria of binary systems containing imidazolium-based ionic liquids. Ind Eng Chem Res 46(12):4323–4329Google Scholar
  133. 133.
    Kim YS, Jang JH, Lim BD et al (2007) Solubility of mixed gases containing carbon dioxide in ionic liquids: measurements and predictions. Fluid Phase Equilib 256(1–2):70–74Google Scholar
  134. 134.
    Mollmann C, Gmehling J (1997) Measurement of activity coefficients at infinite dilution using gas–liquid chromatography. 5. Results for N-methylacetamide, N, N-dimethylacetamide, N, N-dibutylformamide, and sulfolane as stationary phases. J Chem Eng Data 42(1):35–40Google Scholar
  135. 135.
    Heintz A, Kulikov DV, Verevkin SP (2001) Thermodynamic properties of mixtures containing ionic liquids. 1. Activity coefficients at infinite dilution of alkanes, alkenes, and alkylbenzenes in 4-methyl-n-butylpyridinium tetrafluoroborate using gas–liquid chromatography. J Chem Eng Data 46(6):1526–1529Google Scholar
  136. 136.
    Krummen M, Wasserscheid P, Gmehling J (2002) Measurement of activity coefficients at infinite dilution in ionic liquids using the dilutor technique. J Chem Eng Data 47(6):1411–1417Google Scholar
  137. 137.
    Heintz A, Kulikov DV, Verevkin SP (2002) Thermodynamic properties of mixtures containing ionic liquids. 2. Activity coefficients at infinite dilution of hydrocarbons and polar solutes in 1-methyl-3-ethyl-imidazolium bis(trifluoromethyl-sulfonyl) amide and in 1,2-dimethyl-3-ethyl-imidazolium bis(trifluoromethyl-sulfonyl) amide using gas–liquid chromatography. J Chem Eng Data 47(4):894–899Google Scholar
  138. 138.
    Yan PF, Liu QS, Yang M et al (2010) Activity coefficients at infinite dilution of organic solutes in N-alkylpyridinium bis(trifluoromethylsulfonyl)imide (CnPYNTf2, n = 2, 4, 5) using gas–liquid chromatography. J Chem Thermodyn 42(12):1415–1422Google Scholar
  139. 139.
    Yan PF, Yang M, Liu XM et al (2010) Activity coefficients at infinite dilution of organic solutes in 1-ethy1-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate EMIMFAP using gas–liquid chromatography. J Chem Eng Data 55(7):2444–2450Google Scholar
  140. 140.
    Yan PF, Yang M, Liu XM et al (2010) Activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate EMINI TCB using gas–liquid chromatography. J Chem Thermodyn 42(6):817–822Google Scholar
  141. 141.
    Domanska U, Krolikowska M (2011) Measurements of activity coefficients at infinite dilution for organic solutes and water in the ionic liquid 1-butyl-1-methylpiperidinium thiocyanate. J Chem Eng Data 56(1):124–129Google Scholar
  142. 142.
    Domanska U, Zawadzki M, Krolikowska M et al (2011) Measurements of activity coefficients at infinite dilution of organic compounds and water in isoquinolinium-based ionic liquid C8iQuin NTf2 using GLC. J Chem Thermodyn 43(3):499–504Google Scholar
  143. 143.
    Domanska U, Krolikowska M, Acree WE et al (2011) Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate. J Chem Thermodyn 43(7):1050–1057Google Scholar
  144. 144.
    Marciniak A (2010) Influence of cation and anion structure of the ionic liquid on extraction processes based on activity coefficients at infinite dilution. A review. Fluid Phase Equilib 294(1–2):213–233Google Scholar
  145. 145.
    Gmehling J, Li JD, Schiller M (1993) A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties. Ind Eng Chem Res 32(1):178–193Google Scholar
  146. 146.
    Mu TC, Rarey J, Gmehling J (2007) Performance of COSMO-RS with sigma profiles from different model chemistries. Ind Eng Chem Res 46(20):6612–6629Google Scholar
  147. 147.
    Nebig S, Bolts R, Gmehling J (2007) Measurement of vapor–liquid equilibria (VLE) and excess enthalpies (H-F) of binary systems with 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and prediction of these properties and gamma(infinity) using modified UNIFAC (Dortmund). Fluid Phase Equilib 258(2):168–178Google Scholar
  148. 148.
    Kato R, Gmehling J (2005) Systems with ionic liquids: Measurement of VLE and [gamma][infinity] data and prediction of their thermodynamic behavior using original UNIFAC, mod. UNIFAC(Do) and COSMO-RS(Ol). J Chem Thermodyn 37(6):603–619Google Scholar
  149. 149.
    Diedenhofen M, Eckert F, Klamt A (2003) Prediction of infinite dilution activity coefficients of organic compounds in ionic liquids using COSMO-RS. J Chem Eng Data 48(3):475–479Google Scholar
  150. 150.
    Chen CC, Simoni LD, Brennecke JF et al (2008) Correlation and prediction of phase behavior of organic compounds in ionic liquids using the nonrandom two-liquid segment activity coefficient model. Ind Eng Chem Res 47(18):7081–7093Google Scholar
  151. 151.
    Nami F, Deyhimi F (2011) Prediction of activity coefficients at infinite dilution for organic solutes in ionic liquids by artificial neural network. J Chem Thermodyn 43(1):22–27Google Scholar
  152. 152.
    Troncoso J, Cerdeirina CA, Navia P et al (2010) Unusual behavior of the thermodynamic response functions of ionic liquids. J Phys Chem Lett 1(1):211–214Google Scholar
  153. 153.
    Zhong YW, Wang HJ, Diao KS (2007) Densities and excess volumes of binary mixtures of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate with aromatic compound at T (298.15 to 313. 15) K. J Chem Thermodyn 39(2):291–296Google Scholar
  154. 154.
    Earle MJ, Esperanca J, Gilea MA et al (2006) The distillation and volatility of ionic liquids. Nature 439(7078):831–834Google Scholar
  155. 155.
    Øye H, Jagtoyen M, Oksefjell T et al (1991) In: Vapour pressure and thermodynamics of the system 1-methyl-3-ethyl-imidazolium chloride-aluminium chloride. Trans Tech Publ, pp 183–190Google Scholar
  156. 156.
    Rooney D, Jacquemin J, Gardas R (2010) Thermophysical properties of ionic liquids. Top Curr Chem 290:185–212Google Scholar
  157. 157.
    Zaitsau DH, Kabo GJ, Strechan AA et al (2006) Experimental vapor pressures of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imides and a correlation scheme for estimation of vaporization enthalpies of ionic liquids. J Phys Chem A 110(22):7303–7306Google Scholar
  158. 158.
    Armstrong JP, Hurst C, Jones RG et al (2007) Vapourisation of ionic liquids. Phys Chem Chem Phys 9(8):982–990Google Scholar
  159. 159.
    Verevkin SP (2008) Predicting enthalpy of vaporization of ionic liquids: a simple rule for a complex property. Angew Chem Int Ed 47(27):5071–5074Google Scholar
  160. 160.
    Luo HM, Baker GA, Dai S (2008) Isothermogravimetric determination of the enthalpies of vaporization of 1-alkyl-3-methylimidazolium ionic liquids. J Phys Chem B 112(33):10077–10081Google Scholar
  161. 161.
    Santos L, Lopes JNC, Coutinho JAP et al (2007) Ionic liquids: first direct determination of their cohesive energy. J Am Chem Soc 129(2):284–285Google Scholar
  162. 162.
    Esperanca J, Lopes JNC, Tariq M et al (2010) Volatility of aprotic ionic liquids – a review. J Chem Eng Data 55(1):3–12Google Scholar
  163. 163.
    Fredlake CP, Crosthwaite JM, Hert DG et al (2004) Thermophysical properties of imidazolium-based ionic liquids. J Chem Eng Data 49(4):954–964Google Scholar
  164. 164.
    Paulechka YU (2010) Heat capacity of room-temperature ionic liquids: a critical review. J Phys Chem Ref Data 39(3). doi: 10.1063/1.3463478Google Scholar
  165. 165.
    Holbrey JD, Reichert WM, Reddy RG et al (2003) Heat capacities of ionic liquids and their applications as thermal fluids. In: Rodgers RD, Seddon KR (eds) Ionic liquids as green solvents: progress and prospects. ACS symposium series, vol 856. American Chemical Society, Washington, DC, pp. 121–133Google Scholar
  166. 166.
    Crosthwaite JM, Muldoon MJ, Dixon JK et al (2005) Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J Chem Thermodyn 37(6):559–568Google Scholar
  167. 167.
    Shimizu Y, Ohte Y, Yamamura Y et al (2006) Low-temperature heat capacity of room-temperature ionic liquid, 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J Phys Chem B 110(28):13970–13975Google Scholar
  168. 168.
    Bochmann S, Hefter G (2010) Isobaric heat capacities of the ionic liquids Cnmim Tf2N (n = 6, 8) from (323 to 573) K at 10 MPa. J Chem Eng Data 55(5):1808–1813Google Scholar
  169. 169.
    Yang M, Zhao JN, Liu QS et al (2011) Low-temperature heat capacities of 1-alkyl-3-methylimidazolium bis(oxalato)borate ionic liquids and the influence of anion structural characteristics on thermodynamic properties. Phys Chem Chem Phys 13(1):199–206Google Scholar
  170. 170.
    Ge R, Hardacre C, Jacquemin J et al (2008) Heat capacities of ionic liquids as a function of temperature at 0.1 MPa. Measurement and prediction. J Chem Eng Data 53(9):2148–2153Google Scholar
  171. 171.
    Troncoso J, Cerdeirina CA, Sanmamed YA et al (2006) Thermodynamic properties of imidazolium-based ionic liquids: densities, heat capacities, and enthalpies of fusion of bmim PF6 and bmim NTf2. J Chem Eng Data 51(5):1856–1859Google Scholar
  172. 172.
    Yamamuro O, Minamimoto Y, Inamura Y et al (2006) Heat capacity and glass transition of an ionic liquid 1-butyl-3-methylimidazolium chloride. Chem Phys Lett 423(4–6):371–375Google Scholar
  173. 173.
    Zhang ZH, Cui T, Zhang JL et al (2010) Thermodynamic investigation of room temperature ionic liquid – the heat capacity and thermodynamic functions of BMIPF6. J Therm Anal Calorim 101(3):1143–1148Google Scholar
  174. 174.
    Tong B, Liu QS, Tan ZC et al (2010) Thermochemistry of alkyl pyridinium bromide ionic liquids: calorimetric measurements and calculations. J Phys Chem A 114(11):3782–3787Google Scholar
  175. 175.
    Diedrichs A, Gmehling J (2006) Measurement of heat capacities of ionic liquids by differential scanning calorimetry. Fluid Phase Equilib 244(1):68–77Google Scholar
  176. 176.
    Zhang ZH, Tan ZC, Sun LX et al (2006) Thermodynamic investigation of room temperature ionic liquid: the heat capacity and standard enthalpy of formation of EMIES. Thermochim Acta 447(2):141–146Google Scholar
  177. 177.
    Yu YH, Soriano AN, Li MH (2009) Heat capacities and electrical conductivities of 1-ethyl-3-methylimidazolium-based ionic liquids. J Chem Thermodyn 41(1):103–108Google Scholar
  178. 178.
    Strechan AA, Kabo AG, Paulechka YU et al (2008) Thermochemical properties of 1-butyl-3-methylimidazolium nitrate. Thermochim Acta 474(1–2):25–31Google Scholar
  179. 179.
    de Castro CAN, Langa E, Morais AL et al (2010) Studies on the density, heat capacity, surface tension and infinite dilution diffusion with the ionic liquids C4mim NTf2, C4mim dca, C2mimEtOSO3 and Aliquat dca. Fluid Phase Equilib 294(1–2):157–179Google Scholar
  180. 180.
    Mu TC, Zhang XG, Han BX et al (2003) Effect of phase behavior on the constant volume heat capacity of ethane plus ethanol and ethane plus acetone mixed fluids near the critical region and the intermolecular interaction. Fluid Phase Equilib 214(1):53–65Google Scholar
  181. 181.
    Mu TC, Liu ZM, Han BX et al (2003) Effect of phase behavior, density, and isothermal compressibility on the constant-volume heat capacity of ethane plus n-pentane mixed fluids in different phase regions. J Chem Thermodyn 35(12):2033–2044Google Scholar
  182. 182.
    Ficke LE, Rodriguez H, Brennecke JF (2008) Heat capacities and excess enthalpies of 1-ethyl-3-methylimidazolium-based ionic liquids and water. J Chem Eng Data 53(9):2112–2119Google Scholar
  183. 183.
    Anouti M, Caillon-Caravanier M, Dridi Y et al (2009) Liquid densities, heat capacities, refractive index and excess quantities for protic ionic liquids + water binary system. J Chem Thermodyn 41(6):799–808Google Scholar
  184. 184.
    Lin PY, Soriano AN, Leron RB et al (2010) Electrolytic conductivity and molar heat capacity of two aqueous solutions of ionic liquids at room-temperature: measurements and correlations. J Chem Thermodyn 42(8):994–998Google Scholar
  185. 185.
    Waliszewski D (2008) Heat capacities of the mixtures of ionic liquids with methanol at temperatures from 283.15 K to 323.15 K. J Chem Thermodyn 40(2):203–207Google Scholar
  186. 186.
    Waliszewski D, Piekarski H (2010) Heat capacities of the mixtures of ionic liquids with acetonitrile. J Chem Thermodyn 42(2):189–192Google Scholar
  187. 187.
    Anouti M, Jacquemin J, Lemordant D (2010) Volumetric properties, viscosities, and isobaric heat capacities of imidazolium octanoate protic ionic liquid in molecular solvents. J Chem Eng Data 55(12):5719–5728Google Scholar
  188. 188.
    Gardas RL, Coutinho JAP (2008) A group contribution method for heat capacity estimation of ionic liquids. Ind Eng Chem Res 47(15):5751–5757Google Scholar
  189. 189.
    Chickos JS, Hesse DG, Liebman JF (1993) A group additivity approach for the estimation of heat-capacities of organic liquids and solids at 298 K. Struct Chem 4(4):261–269Google Scholar
  190. 190.
    Soriano AN, Agapito AM, Lagumbay L et al (2010) A simple approach to predict molar heat capacity of ionic liquids using group-additivity method. J Taiwan Inst Chem Eng 41(3):307–314Google Scholar
  191. 191.
    Paulechka YU, Kabo AG, Blokhin AV et al (2010) Heat capacity of ionic liquids: experimental determination and correlations with molar volume. J Chem Eng Data 55(8):2719–2724Google Scholar
  192. 192.
    Preiss U, Slattery JM, Krossing I (2009) In silico prediction of molecular volumes, heat capacities, and temperature-dependent densities of ionic liquids. Ind Eng Chem Res 48(4):2290–2296Google Scholar
  193. 193.
    Schafer A, Klamt A, Sattel D et al (2000) COSMO implementation in TURBOMOLE: extension of an efficient quantum chemical code towards liquid systems. Phys Chem Chem Phys 2(10):2187–2193Google Scholar
  194. 194.
    Strechan AA, Paulechka YU, Blokhin AV et al (2008) Low-temperature heat capacity of hydrophilic ionic liquids BMIMCF3COO and BMIMCH3COO and a correlation scheme for estimation of heat capacity of ionic liquids. J Chem Thermodyn 40(4):632–639Google Scholar
  195. 195.
    Frisch MJ, Trucks GW, Schlegel HB et al (2004) Gaussian 03, revision C.02. Gaussian, WallingfordGoogle Scholar
  196. 196.
    Randic M (1975) Characterization of molecular branching. J Am Chem Soc 97(23):6609–6615Google Scholar
  197. 197.
    Valderrama JO, Rojas RE (2010) Mass connectivity index, a new molecular parameter for the estimation of ionic liquid properties. Fluid Phase Equilib 297(1):107–112Google Scholar
  198. 198.
    Valderrama JO, Martinez G, Rojas RE (2011) Predictive model for the heat capacity of ionic liquids using the mass connectivity index. Thermochim Acta 513(1–2):83–87Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of ChemistryRenmin University of ChinaBeijingChina
  2. 2.Beijing National Laboratory for Molecular SciencesInstitute of Chemistry, Chinese Academy of SciencesBeijingChina

Personalised recommendations