Aggregation in Systems of Ionic Liquids

  • Jianji WangEmail author
  • Huiyong Wang
Part of the Structure and Bonding book series (STRUCTURE, volume 151)


Material preparation in ionic liquids and environmental pollution control by ionic liquids are often closely dependent on the aggregation behavior of ionic liquids in solution. Therefore, understanding the aggregation behavior of ionic liquids in solution is very important from both fundamental and applied aspects. In this chapter, our aim is to provide a summary of our current state of knowledge of the aggregation of ionic liquids in solutions modulated by alkyl chain length, cationic structure, and anionic type of ionic liquids, and by addition of inorganic salts, organic solvents, and surfactants. The possible mechanism for the effect of these factors on the aggregation behavior of ionic liquids has been analyzed, and the potential applications of ionic liquids aggregation in membrane separation of ionic liquids wastewater, controlled drug release, breakage of oil/water emulsions, and selective separation of protein (BSA) from aqueous saccharides has also been illustrated. In addition, the challenges in this field have been addressed and some suggestions are made for future work.


Ionic liquids Aggregation in solution Aggregate microstructure Potential applications 


  1. 1.
    Welton T (1996) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084CrossRefGoogle Scholar
  2. 2.
    Swatloski RP, Holbrey JD, Rogers RD (2003) Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem 5:361–363CrossRefGoogle Scholar
  3. 3.
    Docherty KM, Kulpa J, Charles F (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7:185–189CrossRefGoogle Scholar
  4. 4.
    Wasserschein P, Welton T (2003) Ionic liquids in syntheses. VCH-Wiley, WeinheinGoogle Scholar
  5. 5.
    Rantwijk F, Lau RM, Sheldon RA (2003) Biocatalytic transformations in ionic liquids. Trends Biotechnol 21:131–138CrossRefGoogle Scholar
  6. 6.
    Jain N, Kumar A, Chauhan S, Chauhan SMS (2005) Chemical and biochemical transformations in ionic liquids. Tetrahedron 61:1015–1060CrossRefGoogle Scholar
  7. 7.
    Buzzeo MC, Evans RG, Compton RG (2004) Non-haloaluminate room-temperature ionic liquids in electrochemistry – a review. Chemphyschem 5:1106–1120CrossRefGoogle Scholar
  8. 8.
    Endres F, Abedin SZE (2006) Air and water stable ionic liquids in physical chemistry. Phys Chem Chem Phys 8:2101–2116CrossRefGoogle Scholar
  9. 9.
    Liu J, Jonsson JA, Jing G (2005) Application of ionic liquids in analytical chemistry. Trends Anal Chem 24:20–27CrossRefGoogle Scholar
  10. 10.
    Zhao H, Xia S, Ma P (2005) Use of ionic liquids as ‘green’ solvents for extractions. J Chem Technol Biotechnol 80:1089–1096CrossRefGoogle Scholar
  11. 11.
    Seddon KR (2003) Ionic liquids: a taste of the future. Nat Mater 2:363–365CrossRefGoogle Scholar
  12. 12.
    Visser A, Swaltowski RP, Reichert RM, Mayton R, Sheff S, Wierzbicki A, Davis JH, Rogers RD (2002) Task-specific ionic liquids incorporating novel cations for the coordination and extraction of Hg2+ and Cd2+: synthesis, characterization, and extraction studies. Environ Sci Technol 36:2523–2529CrossRefGoogle Scholar
  13. 13.
    Zhang J, Yang C, Hou Z (2003) Effect of dissolved CO2 on the conductivity of the ionic liquid [bmim][PF6]. New J Chem 27:333–336CrossRefGoogle Scholar
  14. 14.
    Ianchard LA, Gu Z, Brennecke JF (2001) High-pressure phase behavior of ionic liquid/CO2 systems. J Phys Chem B 105:2437–2444CrossRefGoogle Scholar
  15. 15.
    Armstrong W, Anderson JL (2003) High-stability ionic liquids: a new class of stationary phases for gas chromatography. Anal Chem 75:4851–4858CrossRefGoogle Scholar
  16. 16.
    Bowers JP, Butts CJ, Martin PC, Vergara-Gutierrez M (2004) Aggregation behaviour of aqueous solutions in ionic liquids. Langmuir 20:2191–2198CrossRefGoogle Scholar
  17. 17.
    Miskolczy Z, Sebok-Nagy K, Biczok L, Gokturk S (2004) Aggregation and micelle formation of ionic liquids in aqueous solution. Chem Phys Lett 400:296–300CrossRefGoogle Scholar
  18. 18.
    Vanyur R, Biczok L, Miskolczy Z (2007) Micelle formation of 1-alkyl-3-methylimidazolium bromide ionic liquids in aqueous solution. Colloids Surf A Physicochem Eng Aspects 299:256–261CrossRefGoogle Scholar
  19. 19.
    Blesic M, Marques MH, Plechkova NV, Seddon KR, Rebelo LPN, Lopes A (2007) Self-aggregation of ionic liquids: micelle formation in aqueous solution. Green Chem 9:481–490CrossRefGoogle Scholar
  20. 20.
    Huddleston JG, Visser AE, Reichert MW, Willauer HD, Broker GA, Rogers RD (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164CrossRefGoogle Scholar
  21. 21.
    Stepnowski P, Mrozik W, Nichthauser J (2007) Adsorption of alkylimidazolium and alkylpyridinium ionic liquids onto natural soils. Environ Sci Technol 41:511–516CrossRefGoogle Scholar
  22. 22.
    Jungnickel C, Łuczak J, Ranke J, Fernández JF, Müller A, Thöing J (2008) Micelle formation of imidazolium ionic liquids in aqueous solution. Colloids Surf A Physicochem Eng Aspects 316:278–284CrossRefGoogle Scholar
  23. 23.
    Modaressi A, Sifaoui H, Mielcarz M, Domanska U, Rogalski M (2007) Influence of the molecular structure on the aggregation of imidazolium ionic liquids in aqueous solutions. Colloids Surf A Physicochem Eng Aspects 302:181–185CrossRefGoogle Scholar
  24. 24.
    El Seoud OA, Pires PAR, Abdel-Moghny T, Bastos EL (2007) Synthesis and micellar properties of surface-active ionic liquids: 1-alkyl-3-methylimidazolium chlorides. J Colloid Interface Sci 313:296–304CrossRefGoogle Scholar
  25. 25.
    Thomaier S, Werner K (2007) Aggregates in mixtures of ionic liquids. J Mol Liq 130:104–107CrossRefGoogle Scholar
  26. 26.
    Goodchild I, Collier L, Millar SL, Prokěs I, Lord JCD, Butts CPB, Bowers J, Webster JRP, Heenan RK (2007) Structural studies of the phase, aggregation and surface behaviour of 1-alkyl-3-methylimidazolium halide + water mixtures. J Colloid Interface Sci 307:455–468CrossRefGoogle Scholar
  27. 27.
    Sirieix-Plénet J, Gaillon L, Letellier P (2004) Behaviour of a binary solvent mixture constituted by an amphiphilic ionic liquid, 1-decyl-3-methylimidazolium bromide and water: potentiometric and conductimetric studies. Talanta 63:979–986CrossRefGoogle Scholar
  28. 28.
    Baltazar QQ, Chandawalla J, Sawyer K, Anderson JL (2007) Interfacial and micellar properties of imidazolium-based monocationic and dicationic ionic liquids. Colloids Surf A Physicochem Eng Aspects 302:150–156CrossRefGoogle Scholar
  29. 29.
    Dong B, Li N, Zheng L, Yu L, Inoue T (2007) Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution. Langmuir 23:4178–4182CrossRefGoogle Scholar
  30. 30.
    Inoue T, Ebina H, Dong B, Zheng L (2007) Electrical conductivity study on micelle formation of long-chain imidazoliium ionic liquids in aqueous solution. J Colloid Interface Sci 314:236–241CrossRefGoogle Scholar
  31. 31.
    Wang J, Wang H, Zhang S, Zhang H, Zhao Y (2007) Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids [C4mim][BF4] and [Cnmim]Br (n = 4, 6, 8, 10, 12) in aqueous solutions. J Phys Chem B 111:6181–6188CrossRefGoogle Scholar
  32. 32.
    Zhao Y, Gao S, Wang J, Tang J (2008) Aggregation of ionic liquids [Cnmim]Br (n = 4, 6, 8, 10, 12) in D2O: a NMR study. J Phys Chem B 112:2031–2039CrossRefGoogle Scholar
  33. 33.
    Lianos P, Zana R (1981) Fluorescence probe studies of the effect of concentration on the state of aggregation of surfactants in aqueous solution. J Colloid Interface Sci 84:100–107CrossRefGoogle Scholar
  34. 34.
    Li XW, Gao YA, Liu J, Zheng LQ, Chen B, Wu LZ, Tung CH (2010) Aggregation behavior of a chiral long- chain ionic liquid in aqueous solution. J Colloid Interface Sci 343:94–101CrossRefGoogle Scholar
  35. 35.
    Zhang H, Li K, Liang H, Wang J (2008) Spectroscopic studies of the aggregation of imidazolium-based ionic liquids. Colloids Surf A Physicochem Eng Aspects 329:75–81CrossRefGoogle Scholar
  36. 36.
    Bai G, Lopes A, Bastos M (2008) Thermodynamics of micellization of alkylimidazolium surfactants in aqueous solution. J Chem Thermodyn 40:1509–1516CrossRefGoogle Scholar
  37. 37.
    Geng F, Liu J, Zheng L, Yu L, Li Z, Li G, Tung C (2010) Micelle formation of long-chain imidazolium ionic liquids in aqueous solution measured by isothermal titration microcalorimetry. J Chem Eng Data 55:147–151CrossRefGoogle Scholar
  38. 38.
    Cornellas A, Perez L, Comelles F, Ribosa I, Manresa A, Garcia MT (2011) Self-aggregation and antimicrobial activity of imidazolium and pyridinium based ionic liquids in aqueous solution. J Colloid Interface Sci 355:164–171CrossRefGoogle Scholar
  39. 39.
    Singh T, Kumar A (2008) Self-aggregation of ionic liquids in aqueous media: a thermodynamic study. Colloids Surf A Physicochem Eng Aspects 318:263–268CrossRefGoogle Scholar
  40. 40.
    Łuczak J, Hupka J, Thoeming J, Jungnickel C (2007) In: Wilk KA (ed) International scientific conference, surfactants and dispersed systems in theory and practice. PALMA Press, Wrocław/Ksiaz CastleGoogle Scholar
  41. 41.
    Rodriguez JR, Gonzalez-Perez A, Del Castillo JL, Czapkiewicz J (2005) Thermodynamics of micellization of alkyldimethylbenzylammonium chlorides in aqueous solutions. J Colloid Interface Sci 250:438–443CrossRefGoogle Scholar
  42. 42.
    Chen L, Shi-Yow L, Chiung-Chang H, En-Ming C (1998) Temperature dependence of critical micelle concentration of polyoxyethylenated non-ionic surfactants. Colloids Surf A Physicochem Eng Aspects 135:175–181CrossRefGoogle Scholar
  43. 43.
    Mehta SK, Bhasin KK, Chauhan R, Dham S (2005) Effect of temperature on critical micelle concentration and thermodynamic behavior of dodecyldimethylethylammonium bromide and dodecyltrimethylammonium chloride in aqueous media. Colloids Surf A Physicochem Eng Aspects 255:153–157CrossRefGoogle Scholar
  44. 44.
    Muller N (1993) Temperature dependence of critical micelle concentrations and heat capacities of micellization for ionic surfactants. Langmuir 9:96–100CrossRefGoogle Scholar
  45. 45.
    Richard CR, Wildin JL, Rapp AL, Moyna GM (2007) Hydrogen bonds in ionic liquids revisited: (35/37)Cl NMR studies of deuterium isotope effects in 1-n-butyl-3-methylimidazolium chloride. J Phys Chem B 111:11619–11621CrossRefGoogle Scholar
  46. 46.
    Stepnowski P, Nichthauser J, Mrozik W, Buszewski B (2006) Usefulness of π…π aromatic interactions in the selective separation and analysis of imidazolium and pyridinium ionic liquid cations. Anal Bioanal Chem 385:1483–1491CrossRefGoogle Scholar
  47. 47.
    Gonzalez-Perez A, Ruso JM, Prieto G, Sarmiento F (2004) Self-assembly of sodium heptafluorobutyrate in aqueous solution. Colloids Surf A Physicochem Eng Aspects 249:41–44CrossRefGoogle Scholar
  48. 48.
    Zhao M, Zheng L (2011) Micelle formation by N-alkyl-N-methylpyrrolidinium bromide in aqueous solution. Phys Chem Chem Phys 13:1332–1337CrossRefGoogle Scholar
  49. 49.
    Klevens HB (1953) Structure and aggregation in dilate solution of surface active agents. J Am Oil Chem Soc 30:74–80CrossRefGoogle Scholar
  50. 50.
    Huibers PDT, Lobanov VS, Katritzky AR, Shah DO, Karelson M (1997) Prediction of critical micelle concentration using a quantitative structure–property relationship approach. J Colloid Interface Sci 187:113–120CrossRefGoogle Scholar
  51. 51.
    Baker GA, Pandey S, Pandey S, Baker SN (2004) A new class of cationic surfactants inspired by N-alkyl-N-methyl pyrrolidinium ionic liquids. Analyst 12:890–892CrossRefGoogle Scholar
  52. 52.
    Łuczaka J, Hupkaa J, Thöing J, Jungnickel C (2008) Self-organization of imidazolium ionic liquids in aqueous solution. Colloids Surf A Physicochem Eng Aspects 329:125–133CrossRefGoogle Scholar
  53. 53.
    Wang H, Wang J, Zhang S, Xuan X (2008) Structural effects of anions and cations on the aggregation behavior of ionic liquids in aqueous solutions. J Phys Chem B 112:16682–16689CrossRefGoogle Scholar
  54. 54.
    Freire MG, Neves CMSS, Carvalho PJ, Gardas RL, Fernandes AM, Marrucho IM, Santos LMNBF, Coutinho JAP (2007) Mutual solubilities of water and hydrophobic ionic liquids. J Phys Chem B 111:13082–13089CrossRefGoogle Scholar
  55. 55.
    Tokuda H, Ishii K, Suan MABH, Tauzuki S, Hayamizu K, Watanabe M (2006) Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures. J Phys Chem B 110:2833–2839CrossRefGoogle Scholar
  56. 56.
    Bini R, Bortolini O, Chiappe C, Pieraccini D, Siciiano T (2007) Development of cation/anion “interaction” scales for ionic liquids through ESI-MS measurements. J Phys Chem B 111:598–604CrossRefGoogle Scholar
  57. 57.
    Blesic M, Lopes A, Melo E, Petrovski Z, Plechkova NV, Canongia Lopes JN, Seddon KR, Rebelo LPN (2008) On the self-aggregation and fluorescence quenching aptitude of surfactant ionic liquids. J Phys Chem B 112:8645–8650CrossRefGoogle Scholar
  58. 58.
    Pino V, Baltazar QQ, Anderson JL (2007) Examination of analyte partitioning to monocationic and dicationic imidazolium-based ionic liquid aggregates using solid-phase microextraction-gas chromatography. J Chromatogr A 1148:92–99CrossRefGoogle Scholar
  59. 59.
    Zana R (1996) Critical micellization concentration of surfactants in aqueous solution and free energy of micellization. Langmuir 12:1208–1211CrossRefGoogle Scholar
  60. 60.
    Sepúlveda L, Cortés J (1985) Ionization degrees and critical micelle concentrations of hexadecyltrimethylammonium and tetradecyltrimethylammonium micelles with different counterions. J Phys Chem 89:5322–5324CrossRefGoogle Scholar
  61. 61.
    Marcus Y (1991) Thermodynamics of solvation of ions. Part 5. – Gibbs free energy of hydration at 298.15 K. J Chem Soc Faraday Trans 87:2995–2999CrossRefGoogle Scholar
  62. 62.
    Bunton CA, Cowell C (1988) The binding of phenols and phenoxide ions to cationic micelles. J Colloid Interface Sci 122:154–162CrossRefGoogle Scholar
  63. 63.
    Abdel-Rahem R (2008) The influence of hydrophobic counterions on micellar growth of ionic surfactants. Adv Colloid Interface Sci 141:24–36CrossRefGoogle Scholar
  64. 64.
    Shaw DJ (1992) Introduction to colloid and surface chemistry. Butterworth, Heinemann, OxfordGoogle Scholar
  65. 65.
    Dong B, Zhao X, Zheng L, Zhang J, Li N, Inoue T (2008) Aggregation behavior of long-chain imidazolium ionic liquids in aqueous solution: micellization and characterization of micelle microenvironment. Colloids Surf A Physicochem Eng Aspects 317:666–672CrossRefGoogle Scholar
  66. 66.
    Vaghela NM, Sastry NV, Aswal VK (2011) Effect of additives on the surface active and morphological features of 1-octyl-3-methylimidazolium halide aggregates in aqueous media. Colloids Surf A Physicochem Eng Aspects 373:101CrossRefGoogle Scholar
  67. 67.
    Wang H, Feng Q, Wang J, Zhang H (2010) Salt effect on the aggregation behavior of 1-decyl-3-methylimidazolium bromide in aqueous solutions. J Phys Chem B 114:1380–1387CrossRefGoogle Scholar
  68. 68.
    Lin Z, Cai JJ, Scriven LE, Davis HT (1994) Spherical-to-wormlike micelle transition in CTAB solutions. J Phys Chem 98:5984–5993CrossRefGoogle Scholar
  69. 69.
    Magid LJ, Han Z, Warr GG, Cassidy MA, Butler PD, Hamilton WA (1997) The effect of counterion competition for cetyltrimethylammonium micellar surfaces on micellar growth horizons: electrostatics and specific binding. J Phys Chem B 101:7919–7927CrossRefGoogle Scholar
  70. 70.
    Armstrong DW, Henry SJ (1980) Use of an aqueous micellar mobile phase for separation of phenols and polynuclear aromatic hydrocarbons via HPLC. J Liq Chromatogr 3:657–662CrossRefGoogle Scholar
  71. 71.
    Berthod A, García-álvarez-Coque C (2000) Micellar liquid chromatography. Marcel Dekker, New YorkGoogle Scholar
  72. 72.
    Esteve-Romero J, Carda-Broch S, Gil-Agustí M, Capella-Peiró ME, Bose D (2005) Micellar liquid chromatography for the determination of drug materials in pharmaceutical preparations and biological samples. Trends Anal Chem 24:75–91CrossRefGoogle Scholar
  73. 73.
    Armstrong DW (1985) Micelles in separations: application and theory. Sep Purif Methods 14:213–304CrossRefGoogle Scholar
  74. 74.
    Thomas DP, Foley JP (2007) Efficiency enhancements in micellar liquid chromatography through selection of stationary phase and alcohol modifier. J Chromatogr A 1149:282–293CrossRefGoogle Scholar
  75. 75.
    Ruiz-ángel MJ, Torres-Lapasió JR, García-álvarez-Coque MC (2008) Retention mechanisms for basic drugs in the submicellar and micellar reversed-phase liquid chromatographic modes. Anal Chem 80:9705–9713CrossRefGoogle Scholar
  76. 76.
    Pino V, Yao C, Anderson JL (2009) Micellization and interfacial behavior of imidazolium-based ionic liquids in organic solvent–water mixtures. J Colloid Interface Sci 333:548–556CrossRefGoogle Scholar
  77. 77.
    Wang J, Zhang L, Wang H, Wu C (2012) Aggregation behavior modulation of 1-dodecyl-3-methylimidazolium bromide by organic solvents in aqueous solution. J Phys Chem B 115:4955–4962CrossRefGoogle Scholar
  78. 78.
    Sugihara S, Era Y, Funatsu M, Kunitake T, Lee S, Sasaki Y (1997) Micelle formation of dodecylammonium surfactant with mixed counterions: perfluorocarboxylate and alkanesulfonate ions. J Colloid Interface Sci 187:435–442CrossRefGoogle Scholar
  79. 79.
    Beyaz A, Oh WS, Reddy VP (2004) Ionic liquids as modulators of the critical micelle concentration of sodium dodecyl sulfate. Colloids Surf B Biointerfaces 35:119CrossRefGoogle Scholar
  80. 80.
    Dorbritz S, Ruth W, Kragl U (2005) Investigation on aggregate formation of ionic liquids. Adv Synth Catal 347:1273–1279CrossRefGoogle Scholar
  81. 81.
    Li W, Zhang Z, Zhang J, Han B, Wang B, Hou M, Xie Y (2006) Micropolarity and aggregation behavior in ionic liquid + organic solvent solutions. Fluid Phase Equilibria 248:211–216CrossRefGoogle Scholar
  82. 82.
    Consorti CS, Suarez PAZ, de Souza RF, Burrow RA, Farrar DH, Lough AJ, Loh W, da Silva HML, Dupont J (2005) Identification of 1,3-dialkylimidazolium salt supramolecular aggregates in solution. J Phys Chem B 109:4341–4349CrossRefGoogle Scholar
  83. 83.
    Feng Q, Wang H, Zhang S, Wang J (2010) Aggregation behavior of 1-dodecyl-3-methylimidazolium bromide ionic liquid in non-aqueous solvents. Colloids Surf A Physicochem Eng Aspects 367:7–11CrossRefGoogle Scholar
  84. 84.
    Singh T, Kumar A (2007) Aggregation behavior of ionic liquids in aqueous solutions: effect of alkyl chain length, cations, and anions. J Phys Chem B 111:7843–7851CrossRefGoogle Scholar
  85. 85.
    Bhargava BL, Klein ML (2009) Molecular dynamics studies of cation aggregation in the room temperature ionic liquid [C10mim][Br] in aqueous solution. J Phys Chem A 113:1898–1904CrossRefGoogle Scholar
  86. 86.
    Bhargava BL, Klein ML (2009) Initial stages of aggregation in aqueous solutions of ionic liquids: molecular dynamics studies. J Phys Chem B 113:9499–94505CrossRefGoogle Scholar
  87. 87.
    Fernández JF, Waterkamp D, Thöming J (2008) Recovery of ionic liquids from wastewater: aggregation control for intensified membrane filtration. Desalination 224:52–56CrossRefGoogle Scholar
  88. 88.
    Shen Y, Zhang Y, Kuehner D, Yang G, Yuan F, Niu L (2008) Ion-responsive behavior of ionic-liquid surfactant aggregates with applications in controlled release and emulsification. Chemphyschem 9:2198–2202CrossRefGoogle Scholar
  89. 89.
    Pei YC, Li ZY, Liu L, Wang JJ, Wang HY (2010) Selective separation of protein and saccharides by ionic liquids aqueous two-phase systems. Sci China Chem 53:1554–1560CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of EducationHenan Normal UniversityXinxiangP. R. China

Personalised recommendations