Structure, Interaction and Hydrogen Bond

  • Kun Dong
  • Qian Wang
  • Xingmei LuEmail author
  • Qing Zhou
  • Suojiang ZhangEmail author
Part of the Structure and Bonding book series (STRUCTURE, volume 151)


Ionic liquids (ILs), as green solvents, have attracted amazing interest and their potential applications have prompted a large amount of research and investment, and some of the results have been inspiring. In recent years, in combination with cations and anions, some new ILs have been synthesized in the laboratory. However, compared with simple solid salts, the structures of ILs are complicated and their properties vary considerably. It is thus very time consuming to explore ILs experimentally when facing the huge number of ionic combinations. A molecular-based understanding can reveal the quantitative correlation between structures and properties, and is thus an important subject in the study of ILs. The unusual complexity of ionic interactions renders molecular-based interpretations difficult and gives rise to controversies about the structure of the ILs. Herein we discuss the ion-pair, cluster and X-ray crystals structures and their relationship with the properties of many typical ILs, especially imidazolium-based. In the ILs, apart from the strong electrostatic forces, non-covalent H-bonds and van der Waals (dispersion, induce forces) are examined and are shown to have a decisive effect on the properties of ILs.


Ionic liquid Structure Interaction Property Application 



This work was supported financially by the Projects of International Cooperation and Exchanges NSFC (No. 21210006, 21336002 and 21376242), Beijing Natural Science Foundation (No.2131005) and National High Technology Research and Development Program of China (863 Program) (No. 2012AA063001).


  1. 1.
    Walden P (1914) Molecular weights and electrical conductivity of several fused salts. Bull Acad Imp Sci St Petersbourg 8:405–422Google Scholar
  2. 2.
    Li Chum H, Koch VR, Miller LL et al. (1975) Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. J Am Chem Soc 97:3264–3265Google Scholar
  3. 3.
    Fuller J, Carlin RT, Long HCD et al. (1994) Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate: model for room temperature molten salts. J Chem Soc Chem Commun 299–300Google Scholar
  4. 4.
    Wilkes JS, Zaworotko MJ (1992) Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun 965–967Google Scholar
  5. 5.
    Hapiot P, Lagrost C (2008) Electrochemical reactivity in room-temperature ionic liquids. Chem Rev 108:2238–2264Google Scholar
  6. 6.
    Nockemann P, Thijs B, Driesen K et al. (2007) Choline saccharinate and choline acesulfamate: ionic liquids with low toxicities. J Phys Chem B 111:5254–5263Google Scholar
  7. 7.
    Pernak J, Syguda A, Mirska I et al. (2007) Choline-derivative-based ionic liquids. Chem Eur J 13:6817–6827Google Scholar
  8. 8.
    Fredlake CP, Crosthwaite JM, Hert DG et al. (2004) Thermophysical properties of imidazolium-based ionic liquids. J Chem Eng Data 49:945–964Google Scholar
  9. 9.
    Raabe G, Köhler J (2008) Thermodynamical and structural properties of imidazolium based ionic liquids from molecular simulation. J Chem Phys 128:154509Google Scholar
  10. 10.
    Weingartner H (2008) Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew Chem Int Ed 47:654–670Google Scholar
  11. 11.
    Zhang S, Sun N, He X et al. (2006) Physical properties of ionic liquids: database and evaluation. J Phys Chem Ref Data 35:1475–1517Google Scholar
  12. 12.
    Bonhôte P, Dias AP, Papageorgiou N et al. (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178Google Scholar
  13. 13.
    Tokuda H, Hayamizu K, Ishii K et al. (2004) Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J Phys Chem B 108:16593–16600Google Scholar
  14. 14.
    Mcewen AB, Ngo HL, Lecompte K et al. (1999) Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications. J Electrochem Soc 146:1687–1697Google Scholar
  15. 15.
    Hyun B, Dzyuba SV, Bartsch RA et al. (2002) Intermolecular dynamics of room-temperature ionic liquids: femtosecond optical Kerr effect measurements on 1-alkyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imides. J Phys Chem A 106:7579–7585Google Scholar
  16. 16.
    Every HA, Bishop AG, Macfarlane D et al. (2004) Transport properties in a family of dialkylimidazolium ionic liquids. Phys Chem Chem Phys 6:1758–1765Google Scholar
  17. 17.
    Huddleston JG, Visser AE, Reichert WM et al. (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164Google Scholar
  18. 18.
    Tsuzuki S, Tokuda H, Hayamizu K et al. (2005) Magnitude and directionality of interaction in ion pairs of ionic liquids: relationship with ionic conductivity. J Phys Chem B 109:16474–16481Google Scholar
  19. 19.
    Fitchett BD, Knepp TN, Conboy JC (2004) 1-Alkyl-3-methylimidazolium bis(perfluoroalkylsulfonyl)imide water-immiscible ionic liquids. J Electrochem Soc 151:E219–E225Google Scholar
  20. 20.
    Macfarlane D, Sun J, Golding JJ et al. (2000) High conductivity molten salts based on the imide ion. Electrochim Acta 45:1271–1278Google Scholar
  21. 21.
    Hyk W, Caban K, Donten M et al. (2001) Properties of microlayers of ionic liquids generated at microelectrode surface in undiluted redox liquids. Part II J Phys Chem B 105:6943–6949Google Scholar
  22. 22.
    Earle MJ, Esperanc JMSS, Gilea MA et al. (2006) The distillation and volatility of ionic liquids. Nature 439:831–834Google Scholar
  23. 23.
    Zaitsau DH, Kabo GJ, Strechan AA et al. (2006) Experimental vapor pressures of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides and a correlation scheme for estimation of vaporization enthalpies of ionic liquids. J Phys Chem A 110:7303–7306Google Scholar
  24. 24.
    Köddermann T, Paschek D, Ludwig R (2008) Ionic liquids: dissecting the heat of vaporization. Chem Phys Chem 9:549–555Google Scholar
  25. 25.
    Blanchard LA, Gu ZY, Brennecke JF (2001) High-pressure phase behavior of ionic liquid/CO2 systems. J Phys Chem B 105:2437–2444Google Scholar
  26. 26.
    Cammarata L, Kazarian SG, Salterb PA et al. (2001) Molecular states of water in room temperature ionic liquids. Phys Chem Chem Phys 3:5192–5200Google Scholar
  27. 27.
    Devyatykh GG, Sennikov PG (1995) Spectroscopic determination and study of the molecular state of water in ultrapure volatile inorganic substances. Russ Chem Rev 64:817–830Google Scholar
  28. 28.
    Rivera-Rubero S, Baldelli S (2004) Influence of water on the surface of hydrophilic and hydrophobic room-temperature ionic liquids. J Am Chem Soc 126:11788–11789Google Scholar
  29. 29.
    Bhargava BL, Balasubramanian S (2006) Layering at an ionic liquid–vapor interface: a molecular dynamics simulation study of [bmim][PF6]. J Am Chem Soc 128:10073–10078Google Scholar
  30. 30.
    Rogers RD (2007) Reflections on ionic liquids. Nature 447:917–918Google Scholar
  31. 31.
    Katritzky AR, Lomaka A, Petrukhin R et al. (2002) Correlation of the melting point for pyridinium bromides, potential ionic liquids. J Chem Inf Comput Sci 42:71–74Google Scholar
  32. 32.
    Elaiwi A, Hitchcock PB, Seddon KR et al. (1995) Hydrogen bonding in imidazolium salts and its implications for ambient-temperature halogenoaluminate(llI) ionic liquids. J Chem Soc Dalton Trans 3467–3472Google Scholar
  33. 33.
    Dymek CJ, Grossie DA, Fratini AV et al. (1989) Evidence for the presence of hydrogen-bonded ion-ion interactions in the molten salt precursor, 1-methyl-3-ethylimidazolium chloride. J Mol Struct 213:25–34Google Scholar
  34. 34.
    Turner EA, Pye CC, Singer RD (2003) Use of ab initio calculations toward the rational design of room temperature ionic liquids. J Phys Chem A 107:2277–2288Google Scholar
  35. 35.
    Reichert WM, Holbrey JD, Swatloski RP et al. (2007) Solid-state analysis of low-melting 1,3-dialkylimidazolium hexafluorophosphate salts (ionic liquids) by combined X-ray crystallographic and computational analyses. Cryst Growth Des 7:1106–1114Google Scholar
  36. 36.
    Matsumoto K, Hagiwara R (2007) Structural characteristics of alkylimidazolium-based salts containing fluoroanions. J Fluorine Chem 128:317–331Google Scholar
  37. 37.
    Xue H, Verma R, Shreeve JM (2006) Review of ionic liquids with fluorine-containing anions. J Flour Chem 127:159–176Google Scholar
  38. 38.
    Swatloski RP, Holbrey JD, Rogers RD (2003) Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem 5:361–363Google Scholar
  39. 39.
    Choudhury AR, Winterton N, Steiner A et al. (2005) In situ crystallization of low-melting ionic liquids. J Am Chem Soc 127:16792–16793Google Scholar
  40. 40.
    Hasan M, Kozhevnikov IV, Siddiqui MRH et al. (2001) N, N-Dialkylimidazolium chloroplatinate(II), chloroplatinate(IV), and chloroiridate(IV) salts and an N-heterocyclic carbene complex of platinum(II): synthesis in ionic liquids and crystal structures. Inorg Chem 40:795–800Google Scholar
  41. 41.
    Matsumoto K, Hagiwara R, Yoshida R et al. (2004) Syntheses, structures and properties of 1-ethyl-3-methylimidazolium salts of fluorocomplex anions. Dalton Trans 144–149Google Scholar
  42. 42.
    Matsumoto K, Hagiwara R, Mazej Z et al. (2006) Crystal structures of frozen room temperature ionic liquids,1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4), hexafluoroniobate (EMImNbF6) and hexafluorotantalate (EMImTaF6), determined by low-temperature X-ray diffraction. Solid State Sci 8:1250–1257Google Scholar
  43. 43.
    Luo H, Baker GA, Dai S (2008) Isothermogravimetric determination of the enthalpies of vaporization of 1-alkyl-3-methylimidazolium ionic liquids. J Phys Chem B 112:10077–10081Google Scholar
  44. 44.
    Armstrong JP, Hurst C, Jones RG et al. (2007) Vapourisation of ionic liquids. Phys Chem Chem Phys 9:982–990Google Scholar
  45. 45.
    Hunt PA, Kirchner B, Welton T (2006) Characterising the electronic structure of ionic liquids: an examination of the 1-butyl-3-methylimidazolium chloride ion pair. Chem Eur J 12:6762–6775Google Scholar
  46. 46.
    Dong K, Song Y, Liu X et al. (2012) Understanding structures and hydrogen bonds of ionic liquids at the electronic level. J Phys Chem B 116:1007–1017Google Scholar
  47. 47.
    Dong K, Zhang S, Wang D et al. (2006) Hydrogen bonds in imidazolium ionic liquids. J Phys Chem A 110:9775–9782Google Scholar
  48. 48.
    Fumino K, Wulf A, Ludwig R (2009) Hydrogen bonding in protic ionic liquids: reminiscent of water. Angew Chem Int Ed 48:3184–3186Google Scholar
  49. 49.
    Zhao W, Leroy FD, Heggen B et al. (2009) Are there stable ion-pairs in room-temperature ionic liquids? Molecular dynamics simulations of 1-n-butyl-3-methylimidazolium hexafluorophosphate. J Am Chem Soc 131:15825–15833Google Scholar
  50. 50.
    Liu Z, Huang S, Wang W (2004) A refined force field for molecular simulation of imidazolium-based ionic liquids. J Phys Chem B 108:12978–12989Google Scholar
  51. 51.
    Talaty ER, Raja S, Storhaug VJ et al. (2004) Raman and infrared spectra and ab initio calculations of C2-4MIM imidazolium hexafluorophosphate ionic liquids. J Phys Chem B 108:13177–13184Google Scholar
  52. 52.
    Wang Y, Voth GA (2005) Unique spatial heterogeneity in ionic liquids. J Am Chem Soc 127:12192–12193Google Scholar
  53. 53.
    Izvekov S, Violi A, Voth GA (2005) Systematic coarse-graining of nanoparticle interactions in molecular dynamics simulation. J Phys Chem B Lett 109:17019–17024Google Scholar
  54. 54.
    Liu X, Zhou G, Zhang S (2008) Molecular dynamics simulation of acyclic guanidinium-based ionic liquids. Fluid Phase Equilibr 272:1–7Google Scholar
  55. 55.
    Mizuse K, Mikami N, Fujii A (2010) Infrared spectra and hydrogen-bonded network structures of large protonated water clusters H + (H2O)n (n = 20-200). Angew Chem Int Ed 49:10119–10122Google Scholar
  56. 56.
    Russina O, Triolo A, Gontrani L, Caminiti R (2012) Mesoscopic structural heterogeneities in room-temperature ionic liquids. J Phys Chem Lett 3:27–33Google Scholar
  57. 57.
    Hardacre C, McMath SEJ, Nieuwenhuyzen M, Bowron DT, Soper AK (2003) Liquid structure of 1,3-dimethylimidazolium salts. J Phys Condens Matter 15:S159–S166Google Scholar
  58. 58.
    Canongia Lopes JN, Padua AAH (2006) Nanostructural organization in ionic liquids. J Phys Chem B110:3330–3335Google Scholar
  59. 59.
    Triolo A, Russina O, Bleif H-J, Di Cola E (2007) Nanoscale segregation in room temperature ionic liquids. J Phys Chem B111:4641–4644Google Scholar
  60. 60.
    Auon B, Goldbatch A, Gonzalez M, Kohara S, Rice DL, Saboungi M-L (2011) Nanoscale heterogeneity in alkyl-methylimidazolium bromide ionic liquids. J Chem Phys 134:104509Google Scholar
  61. 61.
    Zahn S, Uhlig F, Thar J et al. (2008) Intermolecuar forces in an ionic liquid ([Mmim]Cl) versus those in a typical salt (NaCl). Angew Chem Int Ed 47:3639–3641Google Scholar
  62. 62.
    Crowhurst L, Mawdsley PR, Perez-Arlandis JM et al. (2003) Solvent-solute interactions in ionic liquids. Phys Chem Chem Phys 5:2790–2794Google Scholar
  63. 63.
    Hunt PA, Gould IR (2006) Structural characterization of the 1-butyl-3-methylimidazolium chloride ion pair using ab initio methods. J Phys Chem A 110:2269–2282Google Scholar
  64. 64.
    Abdul-Sada AK, Greenway AM, Hitchcock PB et al. (1986) Upon the structure of room temperature halogenoaluminate ionic liquids. J Chem Soc Chem Commun 1753–1754Google Scholar
  65. 65.
    Khupse ND, Kumar A (2010) Contrasting thermosolvatochromic trends in pyridinium-, pyrrolidinium-, and phosphonium-based ionic liquids. J Phys Chem B 114:376–381Google Scholar
  66. 66.
    Tokuda H, Tsuzuki S, Susan MBH et al. (2006) How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. J Phys Chem B 110:19593–19600Google Scholar
  67. 67.
    Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formates. Biomacromolecules 7:3295–3297Google Scholar
  68. 68.
    Dieter KM, Dymek CJJ, Heimer NE et al. (1988) Ionic structure and interactions in 1-methyl-3-ethylimidazolium chloride-aluminum chloride molten salts. J Am Chem Soc 110:2722–2726Google Scholar
  69. 69.
    Remsing RC, Wildin JL, Rapp AL et al. (2007) Hydrogen bonds in ionic liquids revisited:35/37Cl NMR studies of deuterium isotope effects in 1-n-butyl-3-methylimidazolium chloride. J Phys Chem B 111:11619–11621Google Scholar
  70. 70.
    Hardacre C, Holbrey JD, Mcmath SEJ et al. (2003) Structure of molten 1,3-dimethylimidazolium chloride using neutron diffraction. J Chem Phys 118:273–279Google Scholar
  71. 71.
    Heimer NE, Sesto RED, Meng Z et al. (2006) Vibrational spectra of imidazolium tetrafluoroborate ionic liquids. J Mol Liq 124:84–95Google Scholar
  72. 72.
    Holbrey JD, Reichert WM, Nieuwenhuyzen M et al. (2003) Liquid clathrate formation in ionic liquid–aromatic mixtures. Chem Commun 476–477Google Scholar
  73. 73.
    Hardacre C, Mcmath SEJ, Nieuwenhuyzen M et al. (2003) Liquid structure of 1, 3-dimethylimidazolium salts. J Phys Condens Matter 15:S159–S166Google Scholar
  74. 74.
    Rijnberg E, Richter B, Thiele KH et al. (1998) A homologous series of homoleptic zinc bis(1,4-di-tert-butyl-1,4-diaza-1,3-butadiene) complexes: Kx[Zn(t-BuNCHCHN-t-Bu)2], Zn(t-BuNCHCHN-t-Bu)2, and [Zn(t-BuNCHCHN-t-Bu)2](OTf)x (x = 1, 2). Inorg Chem 37:56–63Google Scholar
  75. 75.
    Umebayashi Y, Fujimori T, Sukizaki T et al. (2005) Evidence of conformational equilibrium of 1-ethyl-3-methylimidazolium in its ionic liquid salts: Raman spectroscopic study and quantum chemical calculations. J Phys Chem A 109:8976–8982Google Scholar
  76. 76.
    Roth C, Peppel T, Fumino K et al. (2010) The importance of hydrogen bonds for the structure of ionic liquids: single-crystal X-ray diffraction and transmission and attenuated total reflection spectroscopy in the terahertz region. Angew Chem Int Ed 49:10221–10224Google Scholar
  77. 77.
    Fumino K, Wulf A, Ludwig R (2008) Strong, localized, and directional hydrogen bonds fluidize ionic liquids. Angew Chem Int Ed 47:8731–8734Google Scholar
  78. 78.
    Gjikaj M, Leye J-C, Xie T et al. (2010) Structural and spectroscopic elucidation of imidazolium and pyridinium based hexachloridophosphates and niobates. CrystEngComm 12:1474–1480Google Scholar
  79. 79.
    Deetlefs M, Hardacre C, Nieuwenhuyzen M et al. (2006) Liquid structure of the ionic liquid 1,3-dimethylimidazolium bis{(trifluoromethyl)sulfonyl}amide. J Phys Chem B 110:12055–12061Google Scholar
  80. 80.
    Holbrey JD, Reichert WM, Rogers RD (2004) Crystal structures of imidazolium bis(trifluoromethanesulfonyl)-imide ‘ionic liquid’ salts: the first organic salt with a cis-TFSI anion conformation. Dalton Trans 2267–2271Google Scholar
  81. 81.
    Wulf A, Fumino K, Ludwig R (2010) Spectroscopic evidence for an enhanced anion–cation interaction from hydrogen bonding in pure imidazolium ionic liquids. Angew Chem Int Ed 49:449–453Google Scholar
  82. 82.
    Shetty PH, Youngberg PJ, Kersten BR et al. (1987) Solvent properties of liquid organic salts used as mobile phases in microcolumn reversed-phase liquid chromatography. J Chromatogr 411:61–79Google Scholar
  83. 83.
    Ding J, Welton T, Armstrong DW (2004) Chiral ionic liquids as stationary phases in gas chromatography. Anal Chem 76:6819–6822Google Scholar
  84. 84.
    Geissler PL, Dellago C, Chandler D et al. (2001) Autoionization in liquid water. Science 291:2121–2124Google Scholar
  85. 85.
    Dong K, Zhang S (2012) Hydrogen bonds: a structural insight into ionic liquids. Chem Eur J 18:2748–2761Google Scholar
  86. 86.
    Downard A, Earle MJ, Hardacre C et al. (2004) Structural studies of crystalline 1-alkyl-3-methylimidazolium chloride salts. Chem Mater 16:43–48Google Scholar
  87. 87.
    Berg RW, Deetlefs M, Seddon KR et al. (2005) Raman and ab initio studies of simple and binary 1-alkyl-3-methylimidazolium ionic liquids. J Phys Chem B 109:19018–19025Google Scholar
  88. 88.
    Wang Y, Voth GA (2006) Tail aggregation and domain diffusion in ionic liquids. J Phys Chem B 110:18601–18608Google Scholar
  89. 89.
    Canongia Lopes JN, Padua AH (2006) Nanostructural organization in ionic liquids. J Phys Chem B 110:3330–3335Google Scholar
  90. 90.
    Xiao D, Rajian JR, Cady A et al. (2007) Nanostructural organization and anion effects on the temperature dependence of the optical Kerr effect spectra of ionic liquids. J Phys Chem B 111:4669–4677Google Scholar
  91. 91.
    Soutullo MD, Odom CI, Wicker BF et al. (2007) Reversible CO2 capture by unexpected plastic-, resin-, and gel-like ionic soft materials discovered during the combi-click generation of a TSIL library. Chem Mater 19:3581–3583Google Scholar
  92. 92.
    Huddleston JG, Willauer HD, Swatloski RP et al. (1998) Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction. Chem Commun 1765–1766Google Scholar
  93. 93.
    Holbrey JD, Lopez-Martin I, Rothenberg G et al. (2008) Desulfurisation of oils using ionic liquids: selection of cationic and anionic components to enhance extraction efficiency. Green Chem 10:87–92Google Scholar
  94. 94.
    Xie LL, Favre-Reguillon A, Wang XX et al. (2008) Selective extraction of neutral nitrogen compounds found in diesel feed by 1-butyl-3-methyl-imidazolium chloride. Green Chem 10:524–531Google Scholar
  95. 95.
    Domanska U, Pobudkowska A, Krolikowski M (2007) Separation of aromatic hydrocarbons from alkanes using ammonium ionic liquid C2NTf2 at T = 298.15 K. Fluid Phase Equilibr 259:173–179Google Scholar
  96. 96.
    Zhang SG, Zhang QL, Zhang ZC (2004) Extractive desulfurization and denitrogenation of fuels using ionic liquids. Ind Eng Chem Res 43:614–622Google Scholar
  97. 97.
    Cao Y, Xing H, Yang Q et al. (2012) Separation of soybean isoflavone aglycone homologues by ionic liquid-based extraction. J Agric Food Chem 60:3432–3440Google Scholar
  98. 98.
    Dong K, Cao Y, Yang Q et al. (2012) Role of hydrogen bonds in ionic-liquid-mediated extraction of natural bioactive homologues. Ind Eng Chem Res 51:5299–5308Google Scholar
  99. 99.
    Anderson JL, Ding J, Welton T et al. (2002) Characterizing ionic liquids on the basis of multiple solvation interactions. J Am Chem Soc 124:14247–14254Google Scholar
  100. 100.
    Pinkert A, Marsh KN, Pang S et al. (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728Google Scholar
  101. 101.
    Rinaldi R, Palkovits R, Schüth F (2008) Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chem Int Ed 47:8047–8050Google Scholar
  102. 102.
    Vispute TP, Zhang H, Sanna A et al. (2010) Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science 330:1222–1227Google Scholar
  103. 103.
    Swatloski RP, Spear SK, Holbrey JD et al. (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975Google Scholar
  104. 104.
    Tan SSY, Macfarlane DR, Upfal J et al. (2009) Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem 11:339–345Google Scholar
  105. 105.
    Qin Y, Lu X, Sun N et al. (2010) Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chem 12:968–971Google Scholar
  106. 106.
    Xie H, Li S, Zhang S (2005) Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers. Green Chem 7:606–608Google Scholar
  107. 107.
    Remsing RC, Swatloski RP, Rogers RD et al. (2006) Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a13C and35/37Cl NMR relaxation study on model systems. Chem Commun 28:1271–1273Google Scholar
  108. 108.
    Sun N, Rahman M, Qin Y et al. (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655Google Scholar
  109. 109.
    Liu H, Sale KL, Holmes BM et al. (2010) Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J Phys Chem B 114:4293–4301Google Scholar
  110. 110.
    Garcia H, Ferreira R, Petkovic M et al. (2010) Dissolution of cork biopolymers in biocompatible ionic liquids. Green Chem 12:367–369Google Scholar
  111. 111.
    Jaeger DA, Tucker CE (1989) Diels-Alder reactions in ethylammonium nitrate, a low-melting fused salt. Tetrahedron Lett 30:1785–1788Google Scholar
  112. 112.
    Aggarwal A, Lancaster NL, Sethi AR et al. (2002) The role of hydrogen bonding in controlling the selectivity of Diels–Alder reactions in room-temperature ionic liquids. Green Chem 4:517–520Google Scholar
  113. 113.
    Anthony JL, Maginn EJ, Brennecke JF (2002) Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J Phys Chem B 106:7315–7320Google Scholar
  114. 114.
    Yuan X, Zhang S, Liu J et al. (2007) Solubilities of CO2 in hydroxyl ammonium ionic liquids at elevated pressures. Fluid Phase Equilibr 257:195–200Google Scholar
  115. 115.
    Zhang S, Chen Y, Ren RX-F et al. (2005) Solubility of CO2 in sulfonate ionic liquids at high pressure. J Chem Eng Data 50:230–233Google Scholar
  116. 116.
    Blanchard LA, Hancu D, Beckman EJ et al. (1999) Green processing using ionic liquids and CO2. Nature 399:28–29Google Scholar
  117. 117.
    Huanga J, Riisager A, Wasserscheidb P et al. (2006) Reversible physical absorption of SO2 by ionic liquids. Chem Commun 38:4027–4029Google Scholar
  118. 118.
    Huang X, Margulis CJ, Li Y et al. (2005) Why is the partial molar volume of CO2 so small when dissolved in a room temperature ionic liquid? Structure and dynamics of CO2 dissolved in [Bmim]+ [PF6]. J Am Chem Soc 127:17842–17851Google Scholar
  119. 119.
    Scovazzo P, Camper D, Kieft J et al. (2004) Regular solution theory and CO2 gas solubility in room-temperature ionic liquids. Ind Eng Chem Res 43:6855–6860Google Scholar
  120. 120.
    Kerlé D, Ludwig R, Geiger A et al. (2009) Temperature dependence of the solubility of carbon dioxide in imidazolium-based ionic liquids. J Phys Chem B 113:12727–12735Google Scholar
  121. 121.
    Paschek D, Köddermann T, Ludwig R (2008) The solvophobic solvation and interaction of small apolar particales in imidazolium-based ionic liquids. Phys Rev Lett 100:115901–115904Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Process Engineering, Chinese Academy of SciencesBeijingChina

Personalised recommendations