Degree of Regularity for HFEv and HFEv-

  • Jintai Ding
  • Bo-Yin Yang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7932)

Abstract

In this paper, we first prove an explicit formula which bounds the degree of regularity of the family of HFEv (“HFE with vinegar”) and HFEv- (“HFE with vinegar and minus”) multivariate public key cryptosystems over a finite field of size q. The degree of regularity of the polynomial system derived from an HFEv- system is less than or equal to

$$ {{(q-1)(r+v+a-1)} \over{2}}+2 ~\text{if $q$ is even and $r+a$ is odd,} $$
$$ {{(q-1)(r+v+a-1)} \over{2}} +2 ~{\rm otherwise}, $$

where the parameters v, D, q, and a are parameters of the cryptosystem denoting respectively the number of vinegar variables, the degree of the HFE polynomial, the base field size, and the number of removed equations, and r is the “rank” paramter which in the general case is determined by D and q as \(r=\lfloor \log_q(D-1)\rfloor +1\). In particular, setting a = 0 gives us the case of HFEv where the degree of regularity is bound by

$$ {{(q - 1)(r + v - 1)} \over{2}} +2 ~\text{if $q$ is even and $r$ is odd,} $$
$$ {{(q-1)(r+v)} \over{2}} +2 ~\text{otherwise.} $$

This formula provides the first solid theoretical estimate of the complexity of algebraic cryptanalysis of the HFEv- signature scheme, and as a corollary bounds on the complexity of a direct attack against the QUARTZ digital signature scheme. Based on some experimental evidence, we evaluate the complexity of solving QUARTZ directly using F4/F5 or similar Gröbner methods to be around 292.

Keywords

Degree of regularity HFE HFEv HFEv- 

References

  1. 1.
    Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations. In: Proceedings of the International Conference on Polynomial System Solving, pp. 71–74 (2004); Previously INRIA report RR-5049Google Scholar
  2. 2.
    Bardet, M., Faugère, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic expansion of the degree of regularity for semi-regular systems of equations. In: Gianni, P. (ed.) MEGA 2005 Sardinia, Italy (2005)Google Scholar
  3. 3.
    Bettale, L., Faugère, J.-C., Perret, L.: Cryptanalysis of multivariate and odd-characteristic HFE variants. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 441–458. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Billet, O., Macario-Rat, G.: Cryptanalysis of the square cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 451–468. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Bouillaguet, C., Chen, H.-C., Cheng, C.-M., Chou, T., Niederhagen, R., Shamir, A., Yang, B.-Y.: Fast exhaustive search for polynomial systems in \({\mathbb{F}_2}\). In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 203–218. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, Innsbruck (1965)Google Scholar
  7. 7.
    Clough, C., Baena, J., Ding, J., Yang, B.-Y., Chen, M.-S.: Square, a new multivariate encryption scheme. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 252–264. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Courtois, N., Goubin, L., Meier, W., Tacier, J.-D.: Solving underdefined systems of multivariate quadratic equations. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 211–227. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Courtois, N.T.: The security of hidden field equations (HFE). In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 266–281. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Courtois, N.T., Daum, M., Felke, P.: On the security of HFE, HFEv- and Quartz. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 337–350. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Courtois, N.T., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000), http://www.minrank.org/xlfull.pdf CrossRefGoogle Scholar
  12. 12.
    Diem, C.: The XL-algorithm and a conjecture from commutative algebra. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 323–337. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Ding, J., Buchmann, J., Mohamed, M.S.E., Mohamed, W.S.A.E., Weinmann, R.-P.: Mutant XL. Talk at the First International Conference on Symbolic Computation and Cryptography (SCC 2008), Beijing (2008)Google Scholar
  14. 14.
    Ding, J., Hodges, T.J.: Inverting HFE systems is quasi-polynomial for all fields. In: Rogaway [31], pp. 724–742Google Scholar
  15. 15.
    Ding, J., Kleinjung, T.: Degree of regularity for HFE−. Cryptology ePrint Archive, Report 2011/570 (2011), http://eprint.iacr.org/
  16. 16.
    Ding, J., Yang, B.-Y.: Multivariate public key cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post Quantum Cryptography, 1st edn., pp. 193–241. Springer, Berlin (2008) ISBN 3-540-88701-6Google Scholar
  17. 17.
    Dubois, V., Gama, N.: The degree of regularity of HFE systems. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 557–576. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Dubois, V., Granboulan, L., Stern, J.: Cryptanalysis of HFE with internal perturbation. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 249–265. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Faugère, J.-C., Joux, A.: Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–60. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Fischlin, M., Buchmann, J., Manulis, M. (eds.): PKC 2012. LNCS, vol. 7293. Springer, Heidelberg (2012)MATHGoogle Scholar
  21. 21.
    Granboulan, L., Joux, A., Stern, J.: Inverting HFE is quasipolynomial. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 345–356. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Huang, Y.-J., Liu, F.-H., Yang, B.-Y.: Public-key cryptography from new multivariate quadratic assumptions. In: Fischlin et al. [20], pp. 190–205Google Scholar
  23. 23.
    Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  24. 24.
    Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999), http://www.minrank.org/hfesubreg.ps CrossRefGoogle Scholar
  25. 25.
    Lazard, D.: Gröbner-bases, Gaussian elimination and resolution of systems of algebraic equations. In: van Hulzen, J.A. (ed.) ISSAC 1983 and EUROCAL 1983. LNCS, vol. 162, pp. 146–156. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  26. 26.
    Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn. Encyclopedia of Mathematics and its Application, vol. 20. Cambridge University Press (2003)Google Scholar
  27. 27.
    Patarin, J.: Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt ’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)Google Scholar
  28. 28.
    Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996), http://www.minrank.org/hfe.pdf CrossRefGoogle Scholar
  29. 29.
    Patarin, J., Courtois, N.T., Goubin, L.: QUARTZ, 128-bit long digital signatures. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 282–288. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  30. 30.
    Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves. Quantum Information & Computation 3(4), 317–344 (2003)MathSciNetMATHGoogle Scholar
  31. 31.
    Rogaway, P. (ed.): Advances in Cryptology – CRYPTO 2011. LNCS, vol. 6841. Springer, Heidelberg (2011)MATHGoogle Scholar
  32. 32.
    Sakumoto, K.: Public-key identification schemes based on multivariate cubic polynomials. In: Fischlin et al. [20], pp. 172–189Google Scholar
  33. 33.
    Sakumoto, K., Shirai, T., Hiwatari, H.: Public-key identification schemes based on multivariate quadratic polynomials. In: Rogaway [31], pp. 706–723Google Scholar
  34. 34.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509 (1997)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Thomae, E., Wolf, C.: Solving underdetermined systems of multivariate quadratic equations revisited. In: Fischlin et al. [20], pp. 156–171.Google Scholar
  36. 36.
    Yang, B.-Y., Chen, J.-M.: All in the XL family: Theory and practice. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 67–86. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  37. 37.
    Yang, B.-Y., Chen, J.-M.: Theoretical analysis of XL over small fields. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 277–288. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jintai Ding
    • 1
    • 2
  • Bo-Yin Yang
    • 3
  1. 1.University of CincinnatiCincinnatiUSA
  2. 2.Chongqing UniversityChina
  3. 3.Academia SinicaTaipeiTaiwan

Personalised recommendations