Skip to main content

Improved Lattice-Based Threshold Ring Signature Scheme

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 7932)

Abstract

We present in this paper an improvement of the lattice-based threshold ring signature proposed by Cayrel, Lindner, Rückert and Silva (CLRS) [LATINCRYPT ’10]. We generalize the same identification scheme CLRS to obtain a more efficient threshold ring signature. The security of our scheme relies on standard lattice problems. The improvement is a significant reduction of the size of the signature. Our result is a t-out-of-N threshold ring signature which can be seen as t different ring signatures instead of N for the other schemes. We describe the ring signature induced by the particular case of only one signer. To the best of our knowledge, the resulted signatures are the most efficient lattice-based ring signature and threshold signature.

Keywords

  • Threshold ring signatures
  • lattices

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-38616-9_3
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-38616-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261(4), 515–534 (1982)

    MathSciNet  MATH  CrossRef  Google Scholar 

  2. Coppersmith, D.: Finding small solutions to small degree polynomials. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 20–31. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  3. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing., pp. 99–108. ACM (1996)

    Google Scholar 

  4. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

    CrossRef  Google Scholar 

  5. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  6. Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  7. Liu, J.K., Wei, V.K., Wong, D.S.: A separable threshold ring signature scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 12–26. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  8. Dallot, L., Vergnaud, D.: Provably secure code-based threshold ring signatures. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS, vol. 5921, pp. 222–235. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  9. Zheng, D., Li, X., Chen, K.: Code-based ring signature scheme. IJ Network Security 5(2), 154–157 (2007)

    Google Scholar 

  10. Aguilar Melchor, C., Cayrel, P.-L., Gaborit, P.: A new efficient threshold ring signature scheme based on coding theory. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 1–16. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  11. Cayrel, P.-L., Lindner, R., Rückert, M., Silva, R.: A lattice-based threshold ring signature scheme. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 255–272. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  12. Cayrel, P.-L., Lindner, R., Rückert, M., Silva, R.: Improved zero-knowledge identification with lattices. In: Heng, S.-H., Kurosawa, K. (eds.) ProvSec 2010. LNCS, vol. 6402, pp. 1–17. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  13. Wang, J., Sun, B.: Ring signature schemes from lattice basis delegation. In: Qing, S., Susilo, W., Wang, G., Liu, D. (eds.) ICICS 2011. LNCS, vol. 7043, pp. 15–28. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  14. Brakerski, Z., Kalai, Y.: A framework for efficient signatures, ring signatures and identity based encryption in the standard model. Technical report, Cryptology ePrint Archive, Report 2010/086 (2010)

    Google Scholar 

  15. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 197–206. ACM (2008)

    Google Scholar 

  16. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  17. Aguilar Melchor, C., Cayrel, P., Gaborit, P., Laguillaumie, F.: A new efficient threshold ring signature scheme based on coding theory. IEEE Transactions on Information Theory 57(7), 4833–4842 (2011)

    MathSciNet  CrossRef  Google Scholar 

  18. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and constructions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  19. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)

    CrossRef  Google Scholar 

  20. Cayrel, P.L., Veron, P.: Improved code-based identification scheme. arXiv preprint arXiv:1001.3017 (2010)

    Google Scholar 

  21. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996)

    CrossRef  Google Scholar 

  22. El Yousfi Alaoui, S.M., Dagdelen, Ö., Véron, P., Galindo, D., Cayrel, P.-L.: Extended security arguments for signature schemes. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 19–34. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bettaieb, S., Schrek, J. (2013). Improved Lattice-Based Threshold Ring Signature Scheme. In: Gaborit, P. (eds) Post-Quantum Cryptography. PQCrypto 2013. Lecture Notes in Computer Science, vol 7932. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38616-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38616-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38615-2

  • Online ISBN: 978-3-642-38616-9

  • eBook Packages: Computer ScienceComputer Science (R0)