Skip to main content

Using LDGM Codes and Sparse Syndromes to Achieve Digital Signatures

  • Conference paper
Post-Quantum Cryptography (PQCrypto 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7932))

Included in the following conference series:

Abstract

In this paper, we address the problem of achieving efficient code-based digital signatures with small public keys. The solution we propose exploits sparse syndromes and randomly designed low-density generator matrix codes. Based on our evaluations, the proposed scheme is able to outperform existing solutions, permitting to achieve considerable security levels with very small public keys.

This work was supported in part by the MIUR project “ESCAPADE” (Grant RBFR105NLC) under the “FIRB – Futuro in Ricerca 2010” funding program, and in part by the Swiss National Science Foundation under grant No. 132256.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baldi, M., Chiaraluce, F.: Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC codes. In: Proc. IEEE International Symposium on Information Theory (ISIT 2007), Nice, France, pp. 2591–2595 (June 2007)

    Google Scholar 

  2. Baldi, M., Chiaraluce, F., Garello, R., Mininni, F.: Quasi-cyclic low-density parity-check codes in the McEliece cryptosystem. In: Proc. IEEE International Conference on Communications (ICC 2007), Glasgow, Scotland, pp. 951–956 (June 2007)

    Google Scholar 

  3. Baldi, M., Bodrato, M., Chiaraluce, F.: A new analysis of the McEliece cryptosystem based on QC-LDPC codes. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 246–262. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Baldi, M., Bambozzi, F., Chiaraluce, F.: On a Family of Circulant Matrices for Quasi-Cyclic Low-Density Generator Matrix Codes. IEEE Trans. on Information Theory 57(9), 6052–6067 (2011)

    Article  MathSciNet  Google Scholar 

  5. Baldi, M., Bianchi, M., Chiaraluce, F., Rosenthal, J., Schipani, D.: Enhanced public key security for the McEliece cryptosystem (2011), http://arxiv.org/abs/1108.2462

  6. M. Baldi, M. Bianchi, and F. Chiaraluce. “Security and complexity of the McEliece cryptosystem based on QC-LDPC codes. IET Information Security (in press), http://arxiv.org/abs/1109.5827

  7. Baldi, M., Bianchi, M., Chiaraluce, F.: Optimization of the parity-check matrix density in QC-LDPC code-based McEliece cryptosystems. To be presented at the IEEE International Conference on Communications (ICC 2013) - Workshop on Information Security over Noisy and Lossy Communication Systems, Budapest, Hungary (June 2013)

    Google Scholar 

  8. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in 2n/20: How 1 + 1 = 0 improves information set decoding. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the mcEliece cryptosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 31–46. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents: ball-collision decoding. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 743–760. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Chabaud, F., Stern, J.: The cryptographic security of the syndrome decoding problem for rank distance codes. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 368–381. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  12. Cheng, J.F., McEliece, R.J.: Some high-rate near capacity codecs for the Gaussian channel. In: Proc. 34th Allerton Conference on Communications, Control and Computing, Allerton, IL (October 1996)

    Google Scholar 

  13. Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Finiasz, M.: Parallel-CFS strengthening the CFS McEliece-based signature scheme. In: Proc. PQCrypto, Darmstadt, Germany, pp. 61–72, May 25-28 (2010)

    Google Scholar 

  16. Garcia-Frias, J., Zhong, W.: Approaching Shannon performance by iterative decoding of linear codes with low-density generator matrix. IEEE Commun. Lett. 7(6), 266–268 (2003)

    Article  Google Scholar 

  17. González-López, M., Vázquez-Araújo, F.J., Castedo, L., Garcia-Frias, J.: Serially-concatenated low-density generator matrix (SCLDGM) codes for transmission over AWGN and Rayleigh fading channels. IEEE Trans. Wireless Commun. 6(8), 2753–2758 (2007)

    Article  Google Scholar 

  18. Kabatianskii, G., Krouk, E., Smeets, B.: A digital signature scheme based on random error correcting codes. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 161–167. Springer, Heidelberg (1997)

    Google Scholar 

  19. Lim, C.H., Lee, P.J.: On the length of hash-values for digital signature schemes. In: Proc. CISC 1995, Seoul, Korea, November 1995, pp. 29–31 (1995)

    Google Scholar 

  20. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in \(\tilde{\mathcal{O}}(2^{0.054n})\). In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN Progress Report, pp. 114–116 (1978)

    Google Scholar 

  22. Minder, L., Sinclair, A.: The extended k-tree algorithm. Journal of Cryptology 25(2), 349–382 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Misoczki, R., Tillich, J.-P., Sendrier, N., Barreto, P.S.L.M.: MDPC-McEliece: New McEliece variants from moderate density parity-check codes (2012), http://eprint.iacr.org/2012/409

  24. Monico, C., Rosenthal, J., Shokrollahi, A.: Using low density parity check codes in the McEliece cryptosystem. In: Proc. IEEE International Symposium on Information Theory (ISIT 2000), Sorrento, Italy, p. 215 (June 2000)

    Google Scholar 

  25. Niebuhr, R., Cayrel, P.-L., Buchmann, J.: Improving the efficiency of Generalized Birthday Attacks against certain structured cryptosystems. In: Proc. WCC 2011, Paris, France, April 11-15 (2011)

    Google Scholar 

  26. Otmani, A., Tillich, J.-P.: An efficient attack on all concrete KKS proposals. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 98–116. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  27. Peters, C.: Information-set decoding for linear codes over F q . In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 81–94. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  28. Sendrier, N.: Decoding one out of many. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 51–67. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  29. Stern, J.: A method for finding codewords of small weight. In: Wolfmann, J., Cohen, G. (eds.) Coding Theory and Applications 1988. LNCS, vol. 388, pp. 106–113. Springer, Heidelberg (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baldi, M., Bianchi, M., Chiaraluce, F., Rosenthal, J., Schipani, D. (2013). Using LDGM Codes and Sparse Syndromes to Achieve Digital Signatures. In: Gaborit, P. (eds) Post-Quantum Cryptography. PQCrypto 2013. Lecture Notes in Computer Science, vol 7932. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38616-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38616-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38615-2

  • Online ISBN: 978-3-642-38616-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics